代码随想录第二十四天| 回溯算法● 理论基础 ● 77. 组合

文章目录

  • 理论基础![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/09da30301c104f02baf792ccbf39da15.png)
    • 效率
    • 回溯法解决的问题
    • 如何理解回溯法
    • 回溯法模板
  • 77.组合
    • 思路:
      • 回溯法三部曲
    • 代码:
    • 思路-剪枝
      • 代码:

理论基础在这里插入图片描述

效率

虽然回溯法很难,很不好理解,但是回溯法并不是什么高效的算法

因为回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案,如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。

那么既然回溯法并不高效为什么还要用它呢?

因为没得选,一些问题能暴力搜出来就不错了,撑死了再剪枝一下,还没有更高效的解法。

回溯法解决的问题

回溯法,一般可以解决如下几种问题:

  • 组合问题:N个数里面按一定规则找出k个数的集合
  • 切割问题:一个字符串按一定规则有几种切割方式
  • 子集问题:一个N个数的集合里有多少符合条件的子集
  • 排列问题:N个数按一定规则全排列,有几种排列方式
  • 棋盘问题:N皇后,解数独等等

另外,会有一些同学可能分不清什么是组合,什么是排列?

组合是不强调元素顺序的,排列是强调元素顺序。

例如:{1, 2} 和 {2, 1} 在组合上,就是一个集合,因为不强调顺序,而要是排列的话,{1, 2} 和 {2, 1} 就是两个集合了。

记住组合无序,排列有序,就可以了。

如何理解回溯法

回溯法解决的问题都可以抽象为树形结构,是的,我指的是所有回溯法的问题都可以抽象为树形结构!

因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度,都构成的树的深度。

递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。

回溯法模板

回溯三部曲

  • 回溯函数模板返回值以及参数

在回溯算法中,我的习惯是函数起名字为backtracking,这个起名大家随意。

回溯算法中函数返回值一般为void。

再来看一下参数,因为回溯算法需要的参数可不像二叉树递归的时候那么容易一次性确定下来,所以一般是先写逻辑,然后需要什么参数,就填什么参数。

但后面的回溯题目的讲解中,为了方便大家理解,我在一开始就帮大家把参数确定下来。

回溯函数伪代码如下:

void backtracking(参数)
  • 回溯函数终止条件

既然是树形结构,那么我们在讲解二叉树的递归 (opens new window)的时候,就知道遍历树形结构一定要有终止条件。

所以回溯也有要终止条件。

什么时候达到了终止条件,树中就可以看出,一般来说搜到叶子节点了,也就找到了满足条件的一条答案,把这个答案存放起来,并结束本层递归。

if (终止条件) {存放结果;return;
}
  • 回溯搜索的遍历过程

在上面我们提到了,回溯法一般是在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成的树的深度。

如图:
在这里插入图片描述
注意图中,我特意举例集合大小和孩子的数量是相等的!

回溯函数遍历过程伪代码如下:

for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {处理节点;backtracking(路径,选择列表); // 递归回溯,撤销处理结果
}

for循环就是遍历集合区间,可以理解一个节点有多少个孩子,这个for循环就执行多少次。

backtracking这里自己调用自己,实现递归。

大家可以从图中看出for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历,这样就把这棵树全遍历完了,一般来说,搜索叶子节点就是找的其中一个结果了。

分析完过程,回溯算法模板框架如下:

void backtracking(参数) {if (终止条件) {存放结果;return;}for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {处理节点;backtracking(路径,选择列表); // 递归回溯,撤销处理结果}
}

77.组合

思路:

  • 抽象树形状
    在这里插入图片描述
    可以看出这棵树,一开始集合是 1,2,3,4, 从左向右取数,取过的数,不再重复取。

第一次取1,集合变为2,3,4 ,因为k为2,我们只需要再取一个数就可以了,分别取2,3,4,得到集合[1,2] [1,3] [1,4],以此类推。

每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围。
图中可以发现n相当于树的宽度,k相当于树的深度。

那么如何在这个树上遍历,然后收集到我们要的结果集呢?

图中每次搜索到了叶子节点,我们就找到了一个结果。

相当于只需要把达到叶子节点的结果收集起来,就可以求得 n个数中k个数的组合集合。

回溯法三部曲

  • 递归函数的返回值以及参数

在这里要定义两个全局变量,一个用来存放符合条件单一结果,一个用来存放符合条件结果的集合。
函数里一定有两个参数,既然是集合n里面取k个数,那么n和k是两个int型的参数。

然后还需要一个参数,为int型变量startIndex,这个参数用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,…,n] )。

为什么要有这个startIndex呢?
startIndex 就是防止出现重复的组合。

从下图中红线部分可以看出,在集合[1,2,3,4]取1之后,下一层递归,就要在[2,3,4]中取数了,那么下一层递归如何知道从[2,3,4]中取数呢,靠的就是startIndex。
在这里插入图片描述

  • 回溯函数终止条件
    在这里插入图片描述
  • 单层搜索的过程
    在这里插入图片描述
for (int i = startIndex; i <= n; i++) { // 控制树的横向遍历path.push_back(i); // 处理节点backtracking(n, k, i + 1); // 递归:控制树的纵向遍历,注意下一层搜索要从i+1开始path.pop_back(); // 回溯,撤销处理的节点
}

代码:

class Solution {List<List<Integer>> res=new ArrayList<>();List<Integer> path = new LinkedList<>();public List<List<Integer>> combine(int n, int k) {backtracking(n,k,1);// 从1开始return res;}//startIndex用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。public void backtracking(int n,int k,int startIndex){//到叶子结点则截止if(path.size()==k){// res.add(path);需要类型转换res.add(new ArrayList<>(path));return;}//对树的宽度进行横向遍历,从start查找到n// for(int i=startIndex;i<path.size();i++){for(int i=startIndex;i<=n;i++){path.add(i);backtracking(n,k,i+1);//传入下一个开始的节点path.removeLast();}}
}

思路-剪枝

在这里插入图片描述
在这里插入图片描述

图中每一个节点(图中为矩形),就代表本层的一个for循环,那么每一层的for循环从第二个数开始遍历的话,都没有意义,都是无效遍历。

所以,可以剪枝的地方就在递归中每一层的for循环所选择的起始位置。
如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了。

注意代码中i,就是for循环里选择的起始位置。

接下来看一下优化过程如下:

  1. 已经选择的元素个数:path.size();

  2. 还需要的元素个数为: k - path.size();

  3. 在集合n中至多要从该起始位置 : n - (k - path.size()) + 1,开始遍历

为什么有个+1呢,因为包括起始位置,我们要是一个左闭的集合。

举个例子,n = 4,k = 3, 目前已经选取的元素为0(path.size为0),n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。

从2开始搜索都是合理的,可以是组合[2, 3, 4]。

这里大家想不懂的话,建议也举一个例子,就知道是不是要+1了。

所以优化之后的for循环是:

for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) // i为本次搜索的起始位置

代码:

class Solution {List<List<Integer>> result = new ArrayList<>();LinkedList<Integer> path = new LinkedList<>();public List<List<Integer>> combine(int n, int k) {combineHelper(n, k, 1);return result;}/*** 每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围,就是要靠startIndex* @param startIndex 用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。*/private void combineHelper(int n, int k, int startIndex){//终止条件if (path.size() == k){result.add(new ArrayList<>(path));return;}for (int i = startIndex; i <= n - (k - path.size()) + 1; i++){path.add(i);combineHelper(n, k, i + 1);path.removeLast();}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/448866.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

后端——go系统学习笔记(不断更新中......)

数组 固定大小 初始化 arr1 : [3]int{1, 2, 3} arr2 : [...]int{1, 2, 3} var arr3 []int var arr4 [4]int切片 长度是动态的 初始化 arr[0:3] slice : []int{1,2,3} slice : make([]int, 10)len和cap len是获取切片、数组、字符串的长度——元素的个数cap是获取切片的容量—…

Elasticsearch-内存结构

ElasticSearch的内存从大的结构可以分堆内存&#xff08;On Heap&#xff09;和堆外内存&#xff08;Off Heap&#xff09;。Off Heap部分由Lucene进行管理。On Heap部分存在可GC部分和不可GC部分&#xff0c;可GC部分通过GC回收垃圾对象&#xff0c;从而释放内存。不可GC部分不…

手机云控制发电机组 有网络随时随地操控监控运行

GenCloudTM 发电机组云控系统简介 Ver2.0 目录 公司简介…… …………………………… ………………………………………………1概 述…… …………………………… ………………………………………………1主要功能及特点………… …………… ………… ………………………………

Halcon C++ 环境与配置

Halcon C 环境与配置 1、环境设置相关 头文件路径添加 D:\MVTec\HALCON-22.11-Steady\include D:\MVTec\HALCON-22.11-Steady\include\halconcpp D:\MVTec\HALCON-22.11-Steady\include\halconclab文件添加 D:\MVTec\HALCON-22.11-Steady\lib\x64-win64link添加路径 D:\MV…

如何避免野指针

大家好&#xff0c;今天给大家介绍如何避免野指针&#xff0c;文章末尾附有分享大家一个资料包&#xff0c;差不多150多G。里面学习内容、面经、项目都比较新也比较全&#xff01;可进群免费领取。 野指针是一种常见的编程错误&#xff0c;它指的是一个指针被释放后&#xff0c…

Redis核心技术与实战【学习笔记】 - 16.Redis 缓存异常:缓存和数据库不一致

概述 只要使用 Redis 缓存&#xff0c;就必须面对缓存和数据库的一致性问题。 重要的是&#xff0c;如果数据不一致&#xff0c;那么业务应用从缓存中读取的数据就不是最新数据&#xff0c;这会导致严重的问题。比如说&#xff0c;我们把电商商品的库存信息缓存在 Redis 中&am…

6-1 A. DS二叉树—二叉树构建与遍历(不含框架)

题目描述 给定一颗二叉树的逻辑结构如下图&#xff0c;&#xff08;先序遍历的结果&#xff0c;空树用字符‘#’表示&#xff0c;例如AB#C##D##&#xff09;&#xff0c;建立该二叉树的二叉链式存储结构&#xff0c;并输出该二叉树的先序遍历、中序遍历和后序遍历结果。 输入 第…

【Java开发岗面试】八股文—微服务、消息中间件

声明&#xff1a; 背景&#xff1a;本人为24届双非硕校招生&#xff0c;已经完整经历了一次秋招&#xff0c;拿到了三个offer。本专题旨在分享自己的一些Java开发岗面试经验&#xff08;主要是校招&#xff09;&#xff0c;包括我自己总结的八股文、算法、项目介绍、HR面和面试…

RabbitMQ下载与安装

一、Docker安装 1.单机部署 我们在Centos7虚拟机中使用Docker来安装。 1.1.下载镜像 方式一&#xff1a;在线拉取 docker pull rabbitmq:3-management方式二&#xff1a;从本地加载 上传到虚拟机中后&#xff0c;使用命令加载镜像即可&#xff1a; docker load -i mq.ta…

(java版)排序算法----【冒泡,选择,插入,希尔,快速排序,归并排序,基数排序】超详细~~

目录 冒泡排序(BubbleSort)&#xff1a; 代码详解&#xff1a; 冒泡排序的优化&#xff1a; 选择排序(SelectSort)&#xff1a; 代码详解&#xff1a; 插入排序&#xff08;InsertSort&#xff09;&#xff1a; 代码详解&#xff1a; 希尔排序(ShellSort)&#xff1a; 法一…

架构学习(二):原生scrapy如何接入scrapy-redis,初步入局分布式

原生scrapy如何接入scrapy-redis&#xff0c;实现初步入局分布式 前言scrpy-redis分布式碎语 实现流程扩展结束 前言 scrpy-redis分布式 下图是scrpy-redis官方提供的架构图&#xff0c;按我理解&#xff0c;与原生scrapy的差异主要是把名单队列服务器化&#xff0c;也是存储…

freertos的引入

1&#xff1a;为什么需要RTOS 传统是采用轮询模式&#xff0c;前后台&#xff0c;定时器驱动和基于状态机等方法处理任务&#xff0c;有着时间&#xff0c;空间上的1复杂性。 核心是交替执行&#xff0c;多线程的完成任务 这便是多任务使用RTOS编写程序&#xff0c;相当于拥有…