Megatron-LM源码系列(七):Distributed-Optimizer分布式优化器实现Part2

1. 使用入口

  • DistributedOptimizer类定义在megatron/optimizer/distrib_optimizer.py文件中。创建的入口是在megatron/optimizer/__init__.py文件中的get_megatron_optimizer函数中。根据传入的args.use_distributed_optimizer参数来判断是用DistributedOptimizer还是Float16OptimizerWithFloat16Params
def get_megatron_optimizer(model,no_weight_decay_cond=None,scale_lr_cond=None,lr_mult=1.0):...# Megatron optimizer.opt_ty = DistributedOptimizer \if args.use_distributed_optimizer else \Float16OptimizerWithFloat16Paramsreturn opt_ty(optimizer,args.clip_grad,args.log_num_zeros_in_grad,params_have_main_grad,args.use_contiguous_buffers_in_local_ddp,args.fp16,args.bf16,args.params_dtype,grad_scaler,model)
  • 相关的Optimizer的使用参考【Megatron-LM源码系列(六):Distributed-Optimizer分布式优化器实现Part1】

2. 初始化init源码说明

在这里插入图片描述

  • 初始化的过程很大程度对应的上图grad buffer分片的实现,对应init函数如下:
    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,params_have_main_grad, use_contiguous_buffers_in_local_ddp,fp16, bf16, params_dtype, grad_scaler, models):
  • init时会通过build_model_gbuf_range_map函数先创建grad buffer的范围映射,也就是对应图中的world_index/local_index/param_index三个。这里的self.models是一个list类型,对于使用了interleave流水线方式的训练来说,这里的self.models中会保存多份model, 其余情况list中只有一个元素。
        # Model grad buffer ranges.self.model_gbuf_ranges = []for model_index, model in enumerate(self.models):self.model_gbuf_ranges.append(self.build_model_gbuf_range_map(model))
  • build_model_gbuf_range_map会依次按grad buffer中类型来进行range的初始化build_model_gbuf_range。这里定义了一个单独的Range类。
@classmethoddef build_model_gbuf_range_map(cls, model):"""Create param-to-grad-buffer mappings, for grad buffer data typeswithin a specific virtual model."""return {dtype : cls.build_model_gbuf_range(model, dtype)for dtype in model._grad_buffers}class Range:"""A range represents a start and end points for indexing a shardfrom a full tensor."""def __init__(self, start, end):self.start = startself.end = endself.size = end - startdef normalize(self, start = 0):return Range(start, start + self.size)def __str__(self):return "%d,%d [%d]" % (self.start, self.end, self.size)def __len__(self):return self.end - self.start
  • build_model_gbuf_range初始化range的流程如下:
    • 获取DP的rank,计算单个Grad buffer切片的大小
    • 保存当前rank的world range和local range, 分别对应world index和local index
    • 计算param的range范围,对应param index
    • 返回当前rank的相关range范围
    @classmethoddef build_model_gbuf_range(cls, model, dtype):# 获取DP的rankdata_parallel_rank = mpu.get_data_parallel_rank()data_parallel_world_size = mpu.get_data_parallel_world_size()# 计算单个Grad buffer切片的大小grad_buffer = model._grad_buffers[dtype]gbuf_size = grad_buffer.numelmax_gbuf_range_size = int(math.ceil(gbuf_size / data_parallel_world_size))# 跟据DDP的rank总数,分别计算每个rank对应的全局rangegbuf_world_all_ranges = []for r in range(data_parallel_world_size):gbuf_world_start = r * max_gbuf_range_sizegbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_range_size)gbuf_world_range = Range(gbuf_world_start, gbuf_world_end)gbuf_world_all_ranges.append(gbuf_world_range)# 保存当前rank的world range和local range# Local DP's ranges.gbuf_world_range = gbuf_world_all_ranges[data_parallel_rank]gbuf_local_range = gbuf_world_range.normalize()# 计算param的range范围param_range_map = cls.build_model_gbuf_param_range_map(model,dtype,gbuf_world_range)# Group into dict.data = {"local" : gbuf_local_range,"world" : gbuf_world_range,"world_all" : gbuf_world_all_ranges,"param_map" : param_range_map,"max_range_size" : max_gbuf_range_size,}return data
  • 接着会根据当前rank相关的Range内容self.model_gbuf_ranges调用build_model_param_gbuf_map函数,主要作用是创建model_gbuf_ranges的逆映射,保存param->(modex_index, type)的映射。
class DistributedOptimizer(MixedPrecisionOptimizer):def __init__(...):...self.model_param_gbuf_map = \self.build_model_param_gbuf_map(self.model_gbuf_ranges)...def build_model_param_gbuf_map(cls, model_gbuf_ranges):"""Create a reverse of the model_gbuf_ranges, for referencing inopposite direction."""param_gbuf_map = {}for model_index, model_gbuf_range_map in enumerate(model_gbuf_ranges):for dtype, gbuf_range_map in model_gbuf_range_map.items():for param, param_range_map in gbuf_range_map["param_map"].items():param_gbuf_map[param] = (model_index, dtype)return param_gbuf_map
  • self.build_model_param_gbuf_map之后是初始化Optimizer对应的local group range,Optimizer原本有param_groups包括多个参数组,这里build_optimizer_group_ranges为了创建param参数到group_index的map映射,也就是<model_parameter:group_index>;self.build_model_param_gbuf_map最后对每个group_range中增加新的orig_grouporig_group_idx两个key,原来group_range初始化的时候只有params一个key
class DistributedOptimizer(MixedPrecisionOptimizer):def __init__(...):...# Optimizer ranges.self.model_param_group_index_map, self.opt_group_ranges = \self.build_optimizer_group_ranges(self.optimizer.param_groups,self.model_gbuf_ranges)...def build_optimizer_group_ranges(cls, param_groups, model_gbuf_ranges):# 获取param_groups中组的个数num_groups = len(param_groups)# 创建全局的参数到group_index的map映射,也就是<model_parameter:group_index>world_param_group_map = {}for group_index, group in enumerate(param_groups):for param in group["params"]:assert param.requires_gradworld_param_group_map[param] = group_index# 创建当前rank的local_param_group_map, local_param_group_map是param与(group_index, group_params_len)的映射, local_param_group_map虽然返回了但后面没用local_param_group_map = {}group_ranges = [ {"params": []} for _ in param_groups ]for model_gbuf_range_map in model_gbuf_ranges:for dtype, gbuf_range_map in model_gbuf_range_map.items():for param in gbuf_range_map["param_map"]:group_index = world_param_group_map[param]group_range = group_ranges[group_index]group_range["params"].append(param)local_param_group_map[param] = \(group_index, len(group_range["params"]) - 1)# Squeeze zero-size group ranges.for group_index, group_range in enumerate(group_ranges):group_range["orig_group"] = param_groups[group_index]group_range["orig_group_idx"] = param_groups[group_index]return local_param_group_map, group_ranges
  • 在初始化Optimizer之后,是通过创建self.build_model_and_main_param_groups创建optimizer step要用到的main parameter groups, 这里的group一方面是要进行reduce和gather通信操作,另一方面是被优化器用于梯度的更新操作。
class DistributedOptimizer(MixedPrecisionOptimizer):def __init__(...):...# Allocate main param shards.(self.model_float16_groups,self.model_fp32_groups,self.shard_float16_groups,self.shard_fp32_groups,self.shard_fp32_from_float16_groups,) = self.build_model_and_main_param_groups(self.model_gbuf_ranges,self.model_param_gbuf_map,self.opt_group_ranges)...
  • self.build_model_and_main_param_groups的实现主要是关于fp32/fp16/bf16三种类型训练时优化器内的显存分配。
    @classmethoddef build_model_and_main_param_groups(cls,model_gbuf_ranges,param_gbuf_map,opt_group_ranges):...# 保存原本fp16类型parammodel_float16_groups = []# 保存原本fp32类型parammodel_fp32_groups = []# 保存原本fp16类型param的切片shard_float16_groups = []# 保存原本fp32类型param的切片shard_fp32_groups = []# 保存原本fp16类型param的fp32类型param的副本shard_fp32_from_float16_groups = []# 分配每个group的param参数切片for group_index, group_range in enumerate(opt_group_ranges):for model_param in group_range["params"]:if model_param.type() in ['torch.cuda.HalfTensor','torch.cuda.BFloat16Tensor']:# 如果是fp16/bf16类型参数,clone为fp32类型的切片.shard_model_param = model_param.detach().view(-1) \[param_range.start:param_range.end]shard_main_param = shard_model_param.clone().float()...# 添加到group中model_float16_params_this_group.append(model_param)shard_float16_params_this_group.append(shard_model_param)shard_fp32_from_float16_params_this_group.append(shard_main_param)elif model_param.type() == 'torch.cuda.FloatTensor':# 如果是fp32类型参数,不进行clone,直接引用shard_model_param = model_param.view(-1) \[param_range.start:param_range.end]model_fp32_params_this_group.append(model_param)shard_fp32_params_this_group.append(shard_model_param)...# 更新优化器的参数group_range["orig_group"]["params"] = [*shard_fp32_params_this_group,*shard_fp32_from_float16_params_this_group,]return (model_float16_groups,model_fp32_groups,shard_float16_groups,shard_fp32_groups,shard_fp32_from_float16_groups,)
  • 在Optimizer init中,接下来是初始化self.param_buffers,这里的self.param_buffers是DDP模型的grad buffer的view示图,跟grad buffer共享存储,但是用自己的数据类型;最后更新优化器的param_groups。
class DistributedOptimizer(MixedPrecisionOptimizer):def __init__(...):...# 初始化self.param_buffersself.param_buffers = []for model_index, model in enumerate(self.models):current_param_buffers = {}for dtype, grad_buffer in model._grad_buffers.items():# 获取存储,这里是兼容的写法.try:storage = grad_buffer.data.storage()._untyped()except:storage = grad_buffer.data.storage().untyped()# 基于grad_buffer的storage创建param_buffer类型,这里的params_dtype是参数类型; 这里的torch.tensor没有autograd的历史。param_buffer = torch.tensor(storage,dtype = params_dtype,device = grad_buffer.data.device)param_buffer = param_buffer[:grad_buffer.numel_padded]# 这里的dtype是grad_buffer的类型current_param_buffers[dtype] = param_bufferself.param_buffers.append(current_param_buffers)# 最后更新优化器的param_groupsself.optimizer.param_groups = \[ g["orig_group"] for g in self.opt_group_ranges ]self.optimizer.load_state_dict(self.optimizer.state_dict())

3. 参考

  • Megatron-LM源码系列(六):Distributed-Optimizer分布式优化器实现Part1
  • NVIDIA/Megatron-LM

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/449397.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ChatGPT的探索与实践-应用篇

这篇文章主要介绍在实际的开发过程当中&#xff0c;如何使用GPT帮助开发&#xff0c;优化流程&#xff0c;文末会介绍如何与618大促实际的业务相结合&#xff0c;来提升应用价值。全是干货&#xff0c;且本文所有代码和脚本都是利用GPT生成的&#xff0c;请放心食用。 场景一&…

Postman(接口测试工具),什么是Postman接口

目录 一.基本介绍 Postman 是什么Postman 快速入门快速入门需求说明 二.Postman 完成 Controller 层测试 需要的代码&#xff1a; Java类request.jspsuccess.jsp1. 完成请求2. 完成请求3. 完成请求4. 完成请求5. 完成请求 三.发送join 目录 一.基本介绍 Postman 是什么 …

超详细Anconda pytorch cuda cuDNN安装及介绍(李沐老师视频环境)

零、准备知识阶段 ⇲ 显卡驱动、CUDA、cuDNN之间联系以及安装配置 在配置PyTorch的过程中&#xff0c;显卡驱动、CUDA、cuDNN三者之间的关系、作用以及在众多版本中如何搭配一直困扰着我。虽然网上资料很多&#xff0c;但各说其词&#xff0c;即使最终迈过种种坑成功运行&…

idea项目如何上传gitee

1.先创建仓库&#xff08;nonono&#xff01;&#xff01;&#xff01;idea上传会自动创建仓库&#xff01;&#xff01;&#xff01;&#xff01;&#xff09; 2.从gitee上面clone下来&#xff08;nonono&#xff01;&#xff01;&#xff01;&#xff01;这个.git文件也是自动…

Flutter 各种Demo效果合集

Flutter 各种Demo实现效果&#xff1a; github&#xff1a;GitHub - PangHaHa12138/FlutterDemo: Flutter 各种Demo效果合集 1&#xff1a;2种 仿朋友圈 效果,顶部拉伸 和 不拉伸 2&#xff1a;仿抖音上下滑动视频播放 3&#xff1a;视频直播&#xff08;使用的电视台的m3u…

事件分发机制:从OnTouchListener开始,按钮变色的Demo

要彻底弄清楚事件分发机制&#xff0c;先要明白OnTouchListener的作用。 我们看下Android 1.6上&#xff0c;OnTouchListener的代码定义&#xff0c;源码在线地址&#xff1a;Android 1.6 sdk4 View.java 可以看到&#xff0c;OnTouchListener就是View类中的一个public接口&am…

如何读论文

如何读论文 0. 目的 单篇文章从头读到尾&#xff0c;可以&#xff1b; 世界上那么多篇文章&#xff0c; 都这样读&#xff0c; 时间上划不来。 适合你的文章就那么一小撮。 paper 的八股文结构&#xff1a; titleabstractintromethodexpconclusion 1. 第一遍 海选&#…

运用 StringJoiner 高效的拼接字符串

运用 StringJoiner 高效的拼接字符串 package com.zhong.stringdemo;import java.util.ArrayList; import java.util.StringJoiner;public class Test {public static void main(String[] args) {ArrayList<String> s new ArrayList<>();s.add("11");s.…

CEC2013(python):五种算法(OOA、WOA、GWO、DBO、HHO)求解CEC2013(python代码)

一、五种算法简介 1、鱼鹰优化算法OOA 2、鲸鱼优化算法WOA 3、灰狼优化算法GWO 4、蜣螂优化算法DBO 5、哈里斯鹰优化算法HHO 二、5种算法求解CEC2013 &#xff08;1&#xff09;CEC2013简介 参考文献&#xff1a; [1] Liang J J , Qu B Y , Suganthan P N , et al. Pro…

跟着cherno手搓游戏引擎【19】抽象纹理

引入&#xff1a; 导入stb_image: GitHub - nothings/stb: stb single-file public domain libraries for C/C 下载复制stb_image.h的内容&#xff08;8000多行&#xff09;&#xff0c;然后粘到如图位置 stb_image.cpp: #include"ytpch.h" #define STB_IMAGE_IM…

04、全文检索 -- Solr -- 管理 Solr 的 core(使用命令和图形界面创建、删除 core,以及对core 目录下的各文件进行详细介绍)

目录 管理 Solr 的 core创建 Core方式1&#xff1a;solr 命令创建演示&#xff1a;使用 solr 命令创建 Core&#xff1a;演示&#xff1a;命令删除 Core&#xff08;彻底删除&#xff09; 方式2&#xff1a;图形界面创建Web控制台创建CoreWeb控制台删除 Core&#xff08;未彻底…

python使用fabric库

目录 一&#xff1a;介绍 二&#xff1a;远程命令执行 三&#xff1a;文件上传&#xff0c;下载 四&#xff1a;执行多台服务器命令 一&#xff1a;介绍 Fabric是一个Python库&#xff0c;用于简化SSH连接和自动化任务。它提供了一个简单的API来执行远程命令、上传和下载文…