[每周一更]-(第86期):NLP-实战操作-文本分类

在这里插入图片描述

NLP文本分类的应用场景

医疗领域 - 病历自动摘要:
应用: 利用NLP技术从医疗文档中自动生成病历摘要,以帮助医生更快速地了解患者的状况。

法律领域 - 法律文件分类:
应用: 使用文本分类技术自动分类法律文件,例如判决书或法案,以提高法律专业人员的工作效率。

金融领域 - 财报情感分析:
应用: 运用情感分析技术分析财务报告中的文本,以评估公司财务状况并预测市场走势。

教育领域 - 学生作文评分:
应用: 利用NLP技术对学生的作文进行自动评分,为教育工作者提供更快速和客观的评估。

社交媒体 - 主题趋势分析:
应用: 通过对社交媒体上的文本进行主题趋势分析,了解公众对不同话题的看法和讨论。

科研 - 文献关键词提取:
应用: 使用NLP技术从科学文献中提取关键词,帮助研究人员更好地理解文献内容和主题。

电商 - 产品评论情感分析:
应用: 分析电商平台上产品的用户评论,了解用户对产品的满意度和提取改进意见。

旅游 - 多语言翻译服务:
应用: 提供旅游信息的多语言翻译服务,帮助国际游客更好地理解目的地信息。

政府 - 公共舆情监测:
应用: 利用NLP技术监测社会对政府政策的反馈,帮助政府更好地了解公众意见。

体育 - 体育新闻自动摘要:
应用: 利用NLP技术自动生成体育新闻的摘要,提供用户更简洁的阅读体验。

娱乐 - 影视剧本分析:
应用: 分析影视剧本中的对话和情节,了解不同类型影视作品的特点和趋势。

科技 - 代码注释生成:
应用: 使用NLP技术为编程代码自动生成注释,帮助程序员更好地理解和维护代码。

实战操作

中文文本分类

在NLP中进行中文文本分类的实战操作通常包括以下步骤:

准备数据、文本预处理、特征提取、模型训练和评估。

下面是一个简单的中文文本分类实战示例,使用Python和scikit-learn库:

scikit-learn是一个机器学习库,提供了丰富的工具用于特征提取、模型训练、模型评估等。

  1. 准备数据:

    • 收集并准备标注好的中文文本数据,包含文本内容和对应的类别标签。
  2. 文本预处理:

    • 对文本进行清洗,去除停用词、标点符号等。
    • 中文分词,将文本切分成词语。
    • 可以使用jieba分词库进行中文分词。
    import jiebadef chinese_text_preprocessing(text):# 分词words = jieba.cut(text)# 过滤停用词等filtered_words = [word for word in words if word not in stop_words]return " ".join(filtered_words)
    
  3. 特征提取:

    • 将文本表示为机器学习模型可以理解的特征,常用的方法包括词袋模型、TF-IDF等。
    from sklearn.feature_extraction.text import TfidfVectorizer# 示例文本
    texts = ["这是一个正面的例子。", "这个例子带有负面情感。", ...]
    labels = [1, 0, ...]# 中文文本预处理
    preprocessed_texts = [chinese_text_preprocessing(text) for text in texts]# TF-IDF特征提取
    vectorizer = TfidfVectorizer()
    X = vectorizer.fit_transform(preprocessed_texts)
    
  4. 模型训练:

    • 使用机器学习算法训练文本分类模型,常见的算法包括朴素贝叶斯、支持向量机、深度学习模型等。
    
    from sklearn.model_selection import train_test_split
    from sklearn.naive_bayes import MultinomialNB
    from sklearn.metrics import accuracy_score, classification_report# 划分训练集和测试集
    X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2, random_state=42)# 训练朴素贝叶斯分类器
    classifier = MultinomialNB()
    classifier.fit(X_train, y_train)
    
  5. 模型评估:

    • 使用测试集评估模型性能。
    
    # 预测和评估
    predictions = classifier.predict(X_test)
    accuracy = accuracy_score(y_test, predictions)
    print(f"Accuracy: {accuracy}")
    print(classification_report(y_test, predictions))
    

以上是一个简单的中文文本分类的实战示例,

实际应用中可能需要更多的数据预处理、特征工程、模型调优等步骤。同时,针对不同的任务和数据集,可以选择不同的模型和算法。在处理中文文本时,特别需要注意分词和停用词的处理,以保证文本特征的质量。

其他常见分类库

在NLP文本分类的实际应用中,通常会用到一系列常用的Python类库,以便方便地进行文本处理、特征提取、模型训练和评估等任务。

以下是一些常用的NLP相关类库(不包含上述的jieba、scikit-learn):

  1. NLTK (Natural Language Toolkit):

    • NLTK是一个广泛使用的NLP库,提供了各种工具和资源,包括分词、词性标注、命名实体识别、语料库等。
    pythonCopy code
    import nltk
    nltk.download('punkt')
    from nltk.tokenize import word_tokenize
    
  2. TextBlob:

  • TextBlob是一个简单的NLP库,包含一些方便的工具,如情感分析、词性标注等。
pythonCopy code
from textblob import TextBlob
  1. spaCy:
  • spaCy是一个现代的NLP库,具有高效的分词、词性标注、命名实体识别等功能。

import spacy
  1. TensorFlow和PyTorch:
  • TensorFlow和PyTorch是两个主流的深度学习框架,用于构建和训练深度学习模型。

import tensorflow as tf
import torch

在实际应用中,这些类库的组合和使用方式会根据具体情况有所不同。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/449465.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Pytroch 自写训练模板适合入门版 包含十五种经典的自己复现的一维模型 1D CNN

训练模板 在毕业之前,决定整理一下手头的代码,自己做1D-CNN这吗久,打算开源一下自己使用的1D-CNN的代码,包括用随机数生成一个模拟的数据集,到自己写的一个比较好的适合入门的基础训练模板,以及自己复现的…

【JavaEE Spring】Spring事务和事务传播机制

Spring事务和事务传播机制 1. 事务回顾1.1 什么是事务?1.2 为什么需要事务?1.3 事务的操作 2. Spring 中事务的实现2.1 Spring编程式事务(了解)2.2 Spring声明式事务Transactional 3. Transactional 详解3.1 rollbackFor3.2 事务隔离级别3.2.1 MySQL事务隔离级别(回顾)3.2.2 …

uptrained的解释

问题来源 language model checkpoints with multihead attention (MHA) can be uptrained (Komatsuzaki et al., 2022) to use MQA with a small fraction of original training compute 而翻译词典无法翻译 解释: “uptrained” 这个词没有直接的中文翻译&…

航道大数据应用专项研究报告(附下载)

总体目标 充分认识航道大数据对行业治理的重要性和必要性,航道大数据的开发和利用是建设智慧航道的基础。基于大数据的航道管理体系,实现了现有数据的梳理和汇聚,跨部门数据的交换和整合,建立了数据关联和深度学习的模型机制&…

【华为】GRE VPN 实验配置

【华为】GRE VPN 实验配置 前言报文格式 实验需求配置思路配置拓扑GRE配置步骤R1基础配置GRE 配置 ISP_R2基础配置 R3基础配置GRE 配置 PCPC1PC2 抓包检查OSPF建立GRE隧道建立 配置文档 前言 VPN :(Virtual Private Network),即“…

supervision区域行人计数和轨迹追踪初步尝试

1、背景介绍 最近,一位朋友向我介绍了定位与视觉融合的需求,我发现这个想法非常有价值。恰逢我了解到了Supervision框架,便决定尝试运用它来进行初步的测试。这样做不仅有助于探索可以实际应用的项目,还能促进我自己在研究创新方…

多线程有三个必须要保证的特性,才能正常运行(三个特性是:有序性,可见性,原子性)JMM的作用就是保证这三个特征

有序性的原因,和保证措施(as-if-serial) JVM执行代码时,可能会优化编译器和优化CPU的性能发挥,所以会进行对 代码顺序调整。当然,此顺序会保证as-if-serial(也就是再怎么优化顺序,单…

计算斐波那契数

前提需备知识: 斐波那契数列是第一项和第二项为1,第三项为前两项之和,然后以此类推的一个数列,即1,1,2,3,5,8,13,21,34,5…

2024年第四届能源与环境工程国际会议(CoEEE 2024) | Ei Scopus检索

会议简介 Brief Introduction 2024年第四届能源与环境工程国际会议(CoEEE 2024) 会议时间:2024年5月22日-24日 召开地点:意大利米兰 大会官网:www.coeee.org CoEEE 2024将围绕“能源与环境工程”的最新研究领域而展开,为研究人员、…

Fashion MNIST数据集介绍及基于Pytorch下载数据集

Fashion MNIST数据集介绍及基于Pytorch下载数据集 🌵文章目录🌵 🌳引言🌳🌳Fashion MNIST数据集简介🌳Fashion MNIST数据集的类别说明Fashion MNIST数据集图片示例 🌳基于PyTorch下载Fashion MN…

SpinrgBoot-Mybatis基础

​ JDBCMyBatis概述MyBatis基础应用MyBatis动态标签 一、JDBC( Java DataBase Connectivity ):Java连接数据库的解决方案 概念:JDBC就是Java后端操作数据库的解决方案,操作数据的指令应该来自于前端,前端把数据提交到后端Java代…

嵌入式软件中常见的 8 种数据结构

数据结构是一种特殊的组织和存储数据的方式,可以使我们可以更高效地对存储的数据执行操作。数据结构在计算机科学和软件工程领域具有广泛而多样的用途。 几乎所有已开发的程序或软件系统都使用数据结构。此外,数据结构属于计算机科学和软件工程的基础。当…