大家好,目前不少开源模型在通用领域具有不错的效果,但由于缺乏领域数据,往往在一些垂直领域中表现不理想,这时就需要增量预训练和微调等方法来提高模型的领域能力。
但在领域数据增量预训练或微调时,很容易出现灾难性遗忘现象,也就是学会了垂直领域知识,但忘记了通用领域知识,之前介绍过增量预训练以及领域大模型训练技巧。
今天给大家带来一篇增量预训练方法-Llama-Pro,对LLMs进行Transformer块扩展后,增量预训练过程中仅对新增块进行训练,有效地进行模型知识注入,并且极大程度地避免灾难性遗忘。
LLaMA Pro: Progressive LLaMA with Block Expansion
LLaMA Pro: Progressive LLaMA with Block Expansion
Paper: https://arxiv.org/abs/2401.02415
Github: https://github.com/TencentARC/LLaMA-Pro
文章目录
- 技术交流群
- 用通俗易懂方式讲解系列
- 块扩展方法
- 实验细节
- 讨论分析
- 写在最后
技术交流群
前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~
我们建了大模型面试与技术交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。
方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2060,备注:技术交流
资料1
用通俗易懂方式讲解系列
- 用通俗易懂的方式讲解:自然语言处理初学者指南(附1000页的PPT讲解)
- 用通俗易懂的方式讲解:1.6万字全面掌握 BERT
- 用通俗易懂的方式讲解:NLP 这样学习才是正确路线
- 用通俗易懂的方式讲解:28张图全解深度学习知识!
- 用通俗易懂的方式讲解:不用再找了,这就是 NLP 方向最全面试题库
- 用通俗易懂的方式讲解:实体关系抽取入门教程
- 用通俗易懂的方式讲解:灵魂 20 问帮你彻底搞定Transformer
- 用通俗易懂的方式讲解:图解 Transformer 架构
- 用通俗易懂的方式讲解:大模型算法面经指南(附答案)
- 用通俗易懂的方式讲解:十分钟部署清华 ChatGLM-6B,实测效果超预期
- 用通俗易懂的方式讲解:内容讲解+代码案例,轻松掌握大模型应用框架 LangChain
- 用通俗易懂的方式讲解:如何用大语言模型构建一个知识问答系统
- 用通俗易懂的方式讲解:最全的大模型 RAG 技术概览
- 用通俗易懂的方式讲解:利用 LangChain 和 Neo4j 向量索引,构建一个RAG应用程序
- 用通俗易懂的方式讲解:使用 Neo4j 和 LangChain 集成非结构化知识图增强 QA
- 用通俗易懂的方式讲解:面了 5 家知名企业的NLP算法岗(大模型方向),被考倒了。。。。。
- 用通俗易懂的方式讲解:NLP 算法实习岗,对我后续找工作太重要了!。
- 用通俗易懂的方式讲解:理想汽车大模型算法工程师面试,被问的瑟瑟发抖。。。。
- 用通俗易懂的方式讲解:基于 Langchain-Chatchat,我搭建了一个本地知识库问答系统
- 面试了字节大模型算法岗(实习),快被问哭了。。。。
块扩展方法
块扩展,顾名思义,就是在原始模型中每个Transformer块或者某几个Transformer块后增加一个Transformer块,但为了保持扩展后的模型输出保持不变,需要增加的块为恒等块(输入输出相同),如下图所示。
在构建恒等块过程中,主要是将多头注意力层和FFN层中的最后一个线性层(Linear)权重置为0变成Zero-Linear,即可保持经过该块的输入输出一致。
PS:论文附录A中写了大段的推导公式来证明,在此不做过多介绍。
块的增加方式是,对原始模型的 个Transformer块分成 组,每组中包含 个Transformer块,对于每组后添加 个恒等块。代码实现具体如下:
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16)
ckpt = model.state_dict()# original_layers是模型原始层数,layers是模型最后达到层数
split = int(original_layers / (layers - original_layers))layer_cnt = 0output = {}
for i in range(original_layers):for k in ckpt:if ('layers.' + str(i) + '.') in k:output[k.replace(('layers.' + str(i) + '.'), ('layers.' + str(layer_cnt) + '.'))] = ckpt[k]layer_cnt += 1if (i+1) % split == 0:for k in ckpt:if ('layers.' + str(i) + '.') in k:if 'down_proj' in k or 'o_proj' in k:output[k.replace(('layers.' + str(i) + '.'), ('layers.' + str(layer_cnt) + '.'))] = torch.zeros_like(ckpt[k])else:output[k.replace(('layers.' + str(i) + '.'), ('layers.' + str(layer_cnt) + '.'))] = ckpt[k]layer_cnt += 1assert layer_cnt==layers
for k in ckpt:if not 'layers' in k:output[k] = ckpt[k]torch.save(output, output_path)
实验细节
数据由代码和数学组成,其中代码数据采用The-Stack-Dedup数据集中Python语言部分共22B Token,数学数据采用Proof-Pile-2数据集中AlgebraicStack、OpenWebMath和ArXiv部分共55B,详细如下表所示。
数据分布
基础模型为LLaMA2-7B模型,通过块扩展方法将32层模型扩展到40层,其中 、 、 ,每个组从4个Transformer块扩展到5个Transformer块。
对于代码和数学数据进行增量预训练,批量大小为1024,序列最大长度为4096,预热比率为6%,学习率为2e-4,采用余弦学习率调度器,BF16混合精度训练,权重衰减为0.1。使用16个NVIDIA H800 GPU进行了15900个步骤的训练,大约耗费2830个GPU/小时。
在ARC、HellaSwag、MMLU、TruthfulQA、Winogrande、GSM8K、GSM8K-PoT、HumanEval、MBPP等多个评测数据集中进行评测,可以看出,在保持通用任务能力不下降的情况下,数学和代码能力较原始LLaMA2-7B模型有很大提升。
讨论分析
对比块扩展方法与正常训练和Lora方法之间的区别,采用TRACE基准利用总体性能(OP)和逆向转移(BWT)指标进行评估。,如下表所示,块扩展方法整体提升较大。
对比块个数对块扩展方法的影响,进行了不同个数块的实验,并且对比了MoE的方法,训练损失如下,MoE方法的损失下降程度与添加四个块相当。
在代码和法律(16.7B)领域数据下进行增量预训练,在通用任务以及领域任务上比较不同个数块之间的差异,同时比较扩展块全部添加到模型底部或顶部之间的差别,如下所示。可以发现块个数为8时效果最佳,并且不能直接将扩展块全部堆积在头部或尾部,需要分开插入。
写在最后
该方法主要通过增加恒定块扩展模型层数,使模型在增量训练过程中仅训练新增层、冻结原始层,保持模型原有能力,防止模型出现灾难性遗忘现象。
但有两点存疑:
-
目前来说mistral要好于llama,为啥不用mistral进行实验
-
不用恒定块,性能会差多少