使用 LoRA 在 vi​​ggo 数据集上微调 Microsoft phi-2 小语言模型

一、说明

        Microsoft 的基于 Transformer 的小语言模型。它可以根据 MIT 许可在HuggingFace上使用。

        它在 96 个 A100 GPU 上使用 1.4T 令牌进行了 14 天的训练。Phi-2 是一个 27 亿个参数的预训练 Transformer,不使用 RLHF 或指示微调。它进行下一个标记预测,并可用于问答、聊天格式和代码生成中的文本生成。

        事实证明,phi-2 在多个基准测试和编码和数学等任务上优于许多具有 7B 和 13B 参数的模型。

        小语言模型之所以具有优异的性能,是因为使用了经过提炼的高质量训练数据或“教科书质量”的数据。小语言模型使用知识蒸馏。也就是说,他们接受了从 LLMS 中提取的核心/基本知识的培训。然后采用剪枝和量化技术来删除模型的非必要部分。训练数据通常是综合数据集的混合物,这些数据集是专门创建的,旨在教导模型执行科学、日常活动、心理理论等领域的常识推理和一般知识。它还可能包含具有高教育意义的选择性网络数据价值和质量。小语言模型使用创新技术进行扩展。

        接下来,我们将看到有关如何使用 HuggingFace 中的 phi-2 进行提示的分步 Python 代码,然后我们将在 veggo 数据集上对其进行微调。我使用 T4 GPU 在 Google Colab 免费层上运行了此代码笔记本。

二、安装依赖库

        我的代码借鉴自 GitHub 上Harper Carrol 的这篇优秀教程。

  1. 安装所需的库
#@title Install required libraries
!pip install accelerate==0.25.0
!pip install bitsandbytes==0.41.1
!pip install datasets==2.14.6
!pip install peft==0.6.2
!pip install transformers==4.36.2
!pip install torch==2.1.0
!pip install einops==0.4.1  
!pip install huggingface_hub

2.所需进口

import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TrainingArguments, pipeline, logging
from datasets import Dataset

3.我们将使用Google Colab Free tier(T4)上的cuda设备来运行模型

torch.set_default_device("cuda")

4.创建模型和分词器

#create the model object and the corresponding tokenizer
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)

5. 让我们运行一些提示并查看模型响应

# https://huggingface.co/microsoft/phi-2
# This prompt is for code completion
# here the prompt is written within the tokenizer()
inputs = tokenizer('''def fibonacci(n):"""This function prints the terms in Fibonacci series upto n"""''', return_tensors="pt", return_attention_mask=False)outputs = model.generate(**inputs, max_length=100)
text = tokenizer.batch_decode(outputs)[0]
print(text)
#https://huggingface.co/microsoft/phi-2
# here a string containing the prompt is defined separately from the tokenizer() and then passed to it
prompt = '''def fibonacci(n):"""This function prints the terms in Fibonacci series upto n"""'''
inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=False)
outputs = model.generate(**inputs, max_length=100)
text = tokenizer.batch_decode(outputs)[0]
print(text)
# here we see the output of phi-2 for a question-answering prompt
prompt = 'What is thee relevance of mathematics for understanding physics?'
inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=False)
outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)

三、在HuggingFace的veggo微调 phi-2 模型 

现在我们将在HuggingFace 的“veggo”数据集上

ViGGO是视频游戏领域的英文数据到文本生成数据集。目标响应以会话形式以意义表示形式呈现。该数据集大约有 5,000 个非常干净的数据点,因此该数据集可用于评估神经模型的迁移学习、低资源或少样本能力。

6. 让我们设置加速器来加速训练/微调

#@title Set up accelerator to speed up the training/finetuning
from accelerate import FullyShardedDataParallelPlugin, Accelerator
from torch.distributed.fsdp.fully_sharded_data_parallel import FullOptimStateDictConfig, FullStateDictConfigfsdp_plugin = FullyShardedDataParallelPlugin(state_dict_config=FullStateDictConfig(offload_to_cpu=True, rank0_only=False),optim_state_dict_config=FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=False),
)accelerator = Accelerator(fsdp_plugin=fsdp_plugin)

7. 使用有效的 HuggingFace 访问令牌登录您的 Huggingface 帐户。

        您应该在 HuggingFace 上有一个帐户,然后您可以创建一个免费的访问令牌。

#@title login to your huggingface account using your access token
# you can find your access token at https://huggingface.co/settings/tokens
from huggingface_hub import notebook_login
notebook_login()

8.加载viggo数据集

#@title load viggo dataset
from datasets import load_datasettrain_dataset = load_dataset('gem/viggo', split='train')
eval_dataset = load_dataset('gem/viggo', split='validation')
test_dataset = load_dataset('gem/viggo', split='test')

9. 加载基础模型phi-2

#@title load base model microsoft/phi-2 
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForLanguageModelingbase_model_id = "microsoft/phi-2"
model = AutoModelForCausalLM.from_pretrained(base_model_id, load_in_8bit=True, torch_dtype=torch.float16, trust_remote_code=True)

10. 在下面的代码单元中,我们设置 tokenizer 对象, tokenize() 函数将 tokenizer 应用于每个提示,并创建一个“labels”列,其值与数据中的“input_ids”列相同。

        generate_and_tokenize_prompt() 函数将每个数据点转换为适合传递给 phi-2 模型的提示格式。它从数据点中提取“目标”和“含义表示”。最后,我们使用 map() 函数将此函数应用于 train 和 val 数据集中的每个数据点。

#@title set up the tokenizer for base model
tokenizer = AutoTokenizer.from_pretrained(base_model_id,add_eos_token=True,add_bos_token=True, use_fast=False, # needed for now, should be fixed soon
)#@title setup tokenize function to make labels and input_ids the same for the self-supervised fine-tuning.
def tokenize(prompt):result = tokenizer(prompt)result["labels"] = result["input_ids"].copy()return result#@title convert each sample into a promptdef generate_and_tokenize_prompt(data_point):full_prompt =f"""Given a target sentence construct the underlying meaning representation of the input sentence as a single function with attributes and attribute values.This function should describe the target string accurately and the function must be one of the following ['inform', 'request', 'give_opinion', 'confirm', 'verify_attribute', 'suggest', 'request_explanation', 'recommend', 'request_attribute'].The attributes must be one of the following: ['name', 'exp_release_date', 'release_year', 'developer', 'esrb', 'rating', 'genres', 'player_perspective', 'has_multiplayer', 'platforms', 'available_on_steam', 'has_linux_release', 'has_mac_release', 'specifier']### Target sentence:{data_point["target"]}### Meaning representation:{data_point["meaning_representation"]}"""return tokenize(full_prompt)#@title Reformat the prompt and tokenize each sample:tokenized_train_dataset = train_dataset.map(generate_and_tokenize_prompt)
tokenized_val_dataset = eval_dataset.map(generate_and_tokenize_prompt)

11. 模型的输入张量通常使用 max_length 参数将每个输入填充到统一长度。

        为了确定该参数的值,我们可以绘制每个 input_id 的长度分布,并将 max_length 设置为等于最长 input_id 的长度。在本例中,选择的 max_length 为 320。

12. 接下来,我们将再次应用 tokenize(),并将 max_length 参数设置为 320。

max_length = 320 # appropriate max length for this dataset# redefine the tokenize function and tokenizertokenizer = AutoTokenizer.from_pretrained(base_model_id,padding_side="left",add_eos_token=True,  add_bos_token=True,  trust_remote_code=True,use_fast=False, # needed for now, should be fixed soon
)
tokenizer.pad_token = tokenizer.eos_tokendef tokenize(prompt):result = tokenizer(prompt,truncation=True,max_length=max_length,padding="max_length",)result["labels"] = result["input_ids"].copy()return result#@title tokenize train and validation datasets using generate_and_tokenize_prompt function
tokenized_train_dataset = train_dataset.map(generate_and_tokenize_prompt)
tokenized_val_dataset = eval_dataset.map(generate_and_tokenize_prompt)

四、使用LoRA来微调phi-2

        13.让我们使用LoRA(低阶适应)来微调phi-2

        低秩适应是一种快速微调大型语言模型的技术。它冻结预训练的模型权重,并将可训练的秩分解矩阵注入到 Transformer 架构的每一层中,从而减少下游任务的可训练参数的数量。它可以将可训练参数的数量减少10000倍,将GPU内存需求减少3倍。

        要使用 LoRA 微调模型,您需要:

  1. 实例化基本模型。
  2. 创建一个配置 ( LoraConfig),在其中定义 LoRA 特定参数。
  3. 用 包裹基本模型get_peft_model()以获得可训练的PeftModel.
  4. PeftModel像平常训练基本模型一样训练。

   LoraConfig允许您通过以下参数控制 LoRA 如何应用于基础模型:

  • r:更新矩阵的秩,以 表示int。较低的秩会导致较小的更新矩阵和较少的可训练参数。
  • target_modules:应用 LoRA 更新矩阵的模块(例如,注意力块)。
  • alpha:LoRA 比例因子。
  • bias:指定是否bias应训练参数。可以是'none''all'或者'lora_only'
  • modules_to_save:除了 LoRA 层之外的模块列表,要设置为可训练并保存在最终检查点中。这些通常包括模型的自定义头,该头是为微调任务随机初始化的。
  • layers_to_transform:LoRA 转换的层列表。如果未指定,target_modules则变换中的所有图层。
  • layers_patterntarget_modules:如果layers_to_transform指定,则匹配 中图层名称的模式。默认情况下,PeftModel将查看公共层模式(layershblocks等),将其用于奇异和自定义模型。
  • rank_pattern:从图层名称或正则表达式到与 指定的默认排名不同的排名的映射r
  • alpha_pattern:从图层名称或正则表达式到 alpha 的映射,与 指定的默认 alpha 不同lora_alpha

        我们将把 LoRA 应用到模型的 Wqkv、fc1、fc2 层。

from peft import LoraConfig, get_peft_modelconfig = LoraConfig(r=8,lora_alpha=16,target_modules=["Wqkv","fc1","fc2",],bias="none",lora_dropout=0.05,  # Conventionaltask_type="CAUSAL_LM",
)model = get_peft_model(model, config)# Apply the acceleratort to the model for faster traning. 
model = accelerator.prepare_model(model)

五、 使用 LoRA 微调/训练模型

        您将需要设置训练参数或配置参数,例如保存模型的输出目录。我正在将微调后的模型保存/推送到我的 HuggingFace 帐户,您也可以将微调后的模型保存在本地目录或 Colab 目录中。

        其他训练参数包括warmup_steps、per_device_train_batch_size、gradient_accumulation_steps、max_steps、learning_rate、logging_steps、optim、logging_dir、save_strategy、save_steps、evaluation_strategy、eval_steps、do_eval、push_to_hub、report_to、run_name等。

        maz_steps 确定要执行的最大训练步骤,越长,您的模型就越精细,完成训练所需的时间也越长。当 max_steps = 1000 时,我花了 90 分钟在免费的 Google Colab 上进行训练。学习率也会影响训练时间。

#Train the model and push each check point to Huggingface
import transformerstokenizer.pad_token = tokenizer.eos_tokentrainer = transformers.Trainer(model=model,train_dataset=tokenized_train_dataset,eval_dataset=tokenized_val_dataset,args=transformers.TrainingArguments(output_dir="./phi2-finetunedonviggodataset",warmup_steps=5,per_device_train_batch_size=1,gradient_accumulation_steps=4,max_steps=500,learning_rate=2.5e-5, logging_steps=50,optim="paged_adamw_8bit",logging_dir="./logs",        # Directory for storing logssave_strategy="steps",       # Save the model checkpoint every logging stepsave_steps=50,                # Save checkpoints every 50 stepsevaluation_strategy="steps", # Evaluate the model every logging stepeval_steps=50,               # Evaluate and save checkpoints every 50 stepsdo_eval=True,                # Perform evaluation at the end of trainingpush_to_hub=True,),data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)model.config.use_cache = False  
trainer.train()

        现在您已经在 viggo 数据集上微调了 phi-2,并将其保存在 output_dir 或您的 Huggingface 帐户中。

16.接下来,我们将比较基本模型(没有微调)和微调模型(上面训练过的)上示例提示的性能

#Load the base model
import torch
from transformers import AutoTokenizer, AutoModelForCausalLMbase_model_id = "microsoft/phi-2"base_model = AutoModelForCausalLM.from_pretrained(base_model_id,load_in_8bit=True,device_map="auto",trust_remote_code=True,torch_dtype=torch.float16,
)eval_tokenizer = AutoTokenizer.from_pretrained(base_model_id,add_bos_token=True,trust_remote_code=True,use_fast=False,
)#create a sample prompt for evaluation on base model
eval_prompt = """Given a target sentence construct the underlying meaning representation of the input sentence as a single function with attributes and attribute values.
This function should describe the target string accurately and the function must be one of the following ['inform', 'request', 'give_opinion', 'confirm', 'verify_attribute', 'suggest', 'request_explanation', 'recommend', 'request_attribute'].
The attributes must be one of the following: ['name', 'exp_release_date', 'release_year', 'developer', 'esrb', 'rating', 'genres', 'player_perspective', 'has_multiplayer', 'platforms', 'available_on_steam', 'has_linux_release', 'has_mac_release', 'specifier']### Target sentence:
Earlier, you stated that you didn't have strong feelings about PlayStation's Little Big Adventure. Is your opinion true for all games which don't have multiplayer?### Meaning representation:
"""# tokenize the above prompt and generate the response from base model
model_input = eval_tokenizer(eval_prompt, return_tensors="pt").to('cuda')
base_model.eval()
with torch.no_grad():print(eval_tokenizer.decode(base_model.generate(**model_input, max_new_tokens=100)[0], skip_special_tokens=True))

17. 现在让我们从我的 HuggingFace 帐户加载经过微调的模型,并在其上测试相同的提示。

from peft import PeftModel
ft_model = PeftModel.from_pretrained(base_model, "nimrita/phi2-finetunedonviggodataset", force_download=True)eval_prompt = """Given a target sentence construct the underlying meaning representation of the input sentence as a single function with attributes and attribute values.
This function should describe the target string accurately and the function must be one of the following ['inform', 'request', 'give_opinion', 'confirm', 'verify_attribute', 'suggest', 'request_explanation', 'recommend', 'request_attribute'].
The attributes must be one of the following: ['name', 'exp_release_date', 'release_year', 'developer', 'esrb', 'rating', 'genres', 'player_perspective', 'has_multiplayer', 'platforms', 'available_on_steam', 'has_linux_release', 'has_mac_release', 'specifier']### Target sentence:
Earlier, you stated that you didn't have strong feelings about PlayStation's Little Big Adventure. Is your opinion true for all games which don't have multiplayer?### Meaning representation:
"""model_input = eval_tokenizer(eval_prompt, return_tensors="pt").to('cuda')
ft_model = ft_model.to('cuda')
ft_model.eval()
with torch.no_grad():print(eval_tokenizer.decode(ft_model.generate(**model_input, max_new_tokens=100)[0], skip_special_tokens=True))

        您刚刚微调了 phi-2。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/453145.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络安全产品之准入控制系统

文章目录 一、什么是准入控制系统二、准入控制系统的主要功能1. 接入设备的身份认证2. 接入设备的安全性检查 三、准入控制系统的工作原理四、准入控制系统的特点五、准入控制系统的部署方式1. 网关模式2. 控制旁路模式 六、准入控制系统的应用场景七、企业如何利用准入控制系统…

智慧港口:山海鲸可视化引领未来

随着疫情的结束,全球贸易迎来新的春天,港口作为物流枢纽的地位日益凸显。然而,传统港口的运营和管理方式已无法满足现代物流的需求。为了提高港口运营效率,降低成本,智慧港口的概念应运而生。作为山海鲸可视化的开发者…

docker安装-centos

Docker CE 支持 64 位版本 CentOS 7,并且要求内核版本不低于 3.10 卸载旧版本Docker sudo yum remove docker \ docker-common \ docker-selinux \ docker-engine使用yum安装 yum 更新到最新版本: sudo yum update执行以下命令安装依赖包: sudo yum…

Redis-缓存问题及解决方案

本文已收录于专栏 《中间件合集》 目录 概念说明缓存问题缓存击穿问题描述解决方案 缓存穿透问题描述解决方案 缓存雪崩问题描述解决方案提高缓存可用性过期时间配置熔断降级 总结提升 概念说明 Redis是一个开源的内存数据库,也可以用作缓存系统。它支持多种数据结构…

zabbix配置监控脚本

zabbix配置监控脚本 1.修改agent配置文件 [rootchang ~]# vim /etc/zabbix/zabbix_agentd.conf 333行 原# UnsafeUserParameters0 修改成 UnsafeUserParameters12.创建脚本与脚本存放目录 [rootchang ~]# mkdir /etc/zabbix/zabbix_scripts [rootchang zabbix_scripts]# vi…

Springboot写一个对接钉钉机器人的小插件

钉钉机器人 有时候我门需要监控各种事件,需要机器人给我发给提醒 如:git代码交接,代码合并, 服务器异常捕获,。。。。 参照钉钉给我们的开发文档,可以发现对接起来是非常简单哈哈 这是我写的小插件以及例子…

基恩士 KV-8000 PLC通讯简单测试

1、KV-8000通讯协议 基恩士 KV-8000 PLC支持多种通讯方式,包括:OPC UA、Modbus、上位链路命令等。其中OPC UA需要对服务器和全局变量进行设置,Modbus需要调用功能块。默认支持的是上位链路命令,实际是一条条以回车换行结束的ASCII…

06、全文检索 -- Solr -- Solr 全文检索之在图形界面管理 Core 的 Schema(演示对 普通字段、动态字段、拷贝字段 的添加和删除)

目录 Solr 全文检索之管理 Schema使用Web控制台管理Core的Schema3 种 字段解释:Field:普通字段Dynamic Field:动态字段Copy Field:拷贝字段 演示:添加 普通字段( Field )演示:添加 动…

代码随想录算法训练营第三十五天|343. 整数拆分 , 96.不同的二叉搜索树

343. 整数拆分 代码随想录 视频讲解:动态规划,本题关键在于理解递推公式!| LeetCode:343. 整数拆分_哔哩哔哩_bilibili class Solution {public int integerBreak(int n) {// 1.确定dp数组(dp table)以及下…

电脑文件误删除怎么办?8个恢复软件解决电脑磁盘数据可能的误删

您是否刚刚发现您的电脑磁盘数据丢失了?不要绝望!无论分区是否损坏、意外格式化或配置错误,存储在其上的文件都不一定会丢失到数字深渊。 我们已经卷起袖子,深入研究电脑分区恢复软件的广阔领域,为您带来一系列最有效…

浅压缩、深压缩、双引擎、计算机屏幕编码……何去何从?

专业视听领域尤其显示控制和坐席控制领域,最近几年最激动人心的技术,莫过于分布式了。 分布式从推出之日就备受关注:担心稳定性的,质疑同步性能的,怀疑画面质量的…… 诚然,我们在此前见多了带着马赛克的…

Redis核心技术与实战【学习笔记】 - 20.Redis原子操作及并发访问

概述 使用 Redis 时,不可避免地会遇到并发访问的问题,比如说如果多个用户同时下单,就会对缓存在 Redis 中的商品库存并发更新。一旦有了并发写操作,数据就会被修改,如果我们没有对并发写请求做好控制,就可…