神经网络 | 基于 CNN 模型实现土壤湿度预测

Hi,大家好,我是半亩花海。在现代农业和环境监测中,了解土壤湿度的变化对于作物生长和水资源管理至关重要。通过深度学习技术,特别是卷积神经网络,我们可以利用过去的土壤湿度数据来预测未来的湿度趋势。本文将使用 PaddlePaddle 作为深度学习框架,通过数据分析、可视化、数据预处理、模型组网、模型训练和模型预测,基于卷积神经网络(CNN)模型来来处理时间序列数据,完成 10cm 土壤湿度的预测,从而实现一个简单的回归模型。


目录

一、导入必要库

二、数据分析

三、数据预处理

四、模型组网

五、模型训练

六、模型预测


一、导入必要库

import time
import warnings
import numpy as np
import paddle
import paddle.nn as nn
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
from sklearn.preprocessing import MinMaxScalerwarnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来设置字体样式(黑体)以正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False

二、数据分析

# 读取数据
soil_humidity = pd.read_excel("./soil_humidity.xlsx", engine="openpyxl")
# print(soil_humidity.head())# 构建Datetime字段
soil_humidity["Datetime"] = pd.to_datetime(soil_humidity["datetime"])
soil_humidity.drop(["datetime"], axis=1, inplace=True)# 按照时间顺序排序
soil_humidity.index = soil_humidity.Datetime
soil_humidity.drop(["Datetime"], axis=1, inplace=True)
soil_humidity = soil_humidity.sort_index()
print(soil_humidity.head())
# print(soil_humidity.describe())  # 查看数据统计学描述
# print(soil_humidity.dtypes)  # 查看数据类型# 可视化数据分布
sns.set(font='SimHei')  # 设置Seaborn字体
plt.figure(figsize=(8, 5))
plt.plot(soil_humidity.index, soil_humidity["10cm湿度(kg/m2)"], "b--", label='10cm湿度(kg/m2)')
plt.title("土壤湿度随时间变化关系", fontsize=14)
plt.xlabel("时间", fontsize=12)
plt.ylabel("10cm湿度(kg/m2)", fontsize=12)
plt.yticks(fontsize=12)
plt.xticks(fontsize=12)
plt.legend()
plt.grid(True, linestyle='--', alpha=0.5)  # 添加网格显示(开启网格,虚线,透明度0.5)
plt.show()# 筛选所需要的字段
soil_humidity_10cm = soil_humidity.loc[soil_humidity.index[:], ['10cm湿度(kg/m2)']]
print(soil_humidity_10cm)# 绘制热力图,表示数据框中各列之间的相关性
sns.set(font='SimHei')  # 设置Seaborn字体
corr = soil_humidity.corr()  # 计算数据框中各列之间的相关性
plt.figure(figsize=(12, 8), dpi=100)
plt.title("数据框中各列之间的相关性", fontsize=13)
heatmap = sns.heatmap(corr, square=True, linewidths=0.2, annot=True, annot_kws={'size': 9})
heatmap.set_xticklabels(heatmap.get_xticklabels(), rotation=35, horizontalalignment='right')  # 设置y轴标签向左旋转45度
# 设置x轴和y轴标签字体大小
heatmap.tick_params(axis='x', labelsize=8.5)
heatmap.tick_params(axis='y', labelsize=9)
# 调整热力范围字体大小
cbar = heatmap.collections[0].colorbar
cbar.ax.tick_params(labelsize=9)
plt.show()

soil_humidity.head() 输出结果:

            10cm湿度(kg/m2)  40cm湿度(kg/m2)  ...  最大单日降水量(mm)  降水天数
Datetime                                  ...                   
2012-01-01          13.73          30.87  ...         0.51     5
2012-02-01          13.00          30.87  ...         0.76     5
2012-03-01          12.60          30.87  ...         4.83    13
2012-04-01          11.97          30.73  ...         5.33     3
2012-05-01          14.18          29.99  ...        15.49    10

[5 rows x 14 columns]


三、数据预处理

# 划分数据集
all_data = soil_humidity_10cm.values
split_fraction = 0.8  # 设置80%为训练集
train_split = int(split_fraction * int(soil_humidity_10cm.shape[0]))  # 获取数据集的行数,转换为整数,计算切分的训练集大小
train_data = all_data[:train_split, :]  # 从all_data中取前train_split行作为训练集
test_data = all_data[train_split:, :]  # 从all_data中取剩余的部分作为测试集# 数据集可视化
plt.figure(figsize=(8, 5))
plt.plot(np.arange(train_data.shape[0]), train_data[:, 0], label='train data')
plt.plot(np.arange(train_data.shape[0], train_data.shape[0] + test_data.shape[0]), test_data[:, 0], label='test data')
plt.title("数据集可视化", fontsize=14)
plt.xlabel("时间", fontsize=12)
plt.ylabel("10cm湿度(kg/m2)", fontsize=12)
plt.legend()
plt.show()# 归一化
scaler = MinMaxScaler(feature_range=(-1, 1))  # 归一化处理,将数据缩放到[-1, 1]之间
train_scal = scaler.fit_transform(train_data.reshape(-1, 1))
test_scal = scaler.fit_transform(test_data.reshape(-1, 1))# 划分卷积窗口与标签值
window_size = 12
train_scal = train_scal.reshape(-1)
train_scal = paddle.to_tensor(train_scal, dtype='float32')  # 转换成 tensor# 定义数据输入函数,用于接受序列数据和窗口大小这俩个参数,用于CNN训练
def input_data(seq, ws):out = []L = len(seq)for i in range(L - ws):window = seq[i:i + ws]label = seq[i + ws:i + ws + 1]out.append((window, label))return out  # 返回生成的训练样本列表train_scal_data = input_data(train_scal, window_size)  # 归一化后的训练集数据,定义的窗口大小
# 打印一组数据集
print(train_scal_data[0])

train_scal_data[0] 这一组数据集的打印结果:

            10cm湿度(kg/m2)
Datetime                 
2012-01-01          13.73
2012-02-01          13.00
2012-03-01          12.60
2012-04-01          11.97
2012-05-01          14.18
...                   ...
2021-11-01          13.91
2021-12-01          13.14
2022-01-01          12.45
2022-02-01          12.10
2022-03-01          14.96

[123 rows x 1 columns]


四、模型组网

一维卷积层(convolution1d layer),根据输入、卷积核、步长(stride)、填充(padding)、空洞大小(dilations)一组参数计算输出特征层大小。

网络构造大体如下:

  • 先经过一维卷积层 Conv1D
  • 使用 ReLU 激活函数对其进行激活
  • 然后经过第1层线性层 Linear1
  • 再经过第2层线性层 Linear2
class CNNnetwork(paddle.nn.Layer):def __init__(self):super().__init__()  # 调用父类函数self.conv1d = paddle.nn.Conv1D(1, 1, kernel_size=2)  # 一维卷积层Conv1D(输入, 输出, 卷积核大小)self.relu = paddle.nn.ReLU()  # 激活函数, 引入非线性性# 定义了线性层, 将输入维度为a的特征映射到输出维度为b的空间# 这是一个回归任务, 模型的输出是一个实数self.Linear1 = paddle.nn.Linear(11, 50)self.Linear2 = paddle.nn.Linear(50, 1)def forward(self, x):x = self.conv1d(x)   # 通过一维卷积层处理输入数据,提取特征x = self.relu(x)     # 将卷积层的输出通过 ReLU 激活函数, 进行非线性变换x = self.Linear1(x)  # 第一个线性层,线性变换x = self.relu(x)     # 将卷积层的输出通过 ReLU 激活函数, 进行非线性变换x = self.Linear2(x)  # 第二个线性层,线性变换return x

五、模型训练

# 五、模型训练
paddle.seed(666)
model = CNNnetwork()
# 设置损失函数,这里使用的是均方误差损失
criterion = nn.MSELoss()
# 设置优化函数和学习率lr
optimizer = paddle.optimizer.Adam(parameters=model.parameters(), learning_rate=0.001)
# 设置训练周期
epochs = 30# 划分训练集和验证集
split_idx = int(len(train_scal_data) * 0.8)
train_set = train_scal_data[:split_idx]
val_set = train_scal_data[split_idx:]model.train()
start_time = time.time()# 用于存储每轮的训练和验证损失
train_losses = []
val_losses = []for epoch in range(epochs):# 训练阶段model.train()train_loss = 0.0for seq, y_train in train_set:# 每次更新参数前都梯度归零和初始化optimizer.clear_grad()# 注意这里要对样本进行 reshape,转换成 conv1d 的 input size(batch size, channel, series length)seq = paddle.reshape(seq, [1, 1, -1])seq = paddle.to_tensor(seq, dtype='float32')y_pred = model(seq)y_train = paddle.to_tensor(y_train, dtype='float32')loss = criterion(y_pred, y_train)loss.backward()optimizer.step()train_loss += loss.numpy()[0]# 验证阶段model.eval()val_loss = 0.0with paddle.no_grad():for seq_val, y_val in val_set:seq_val = paddle.reshape(seq_val, [1, 1, -1])seq_val = paddle.to_tensor(seq_val, dtype='float32')y_val = paddle.to_tensor(y_val, dtype='float32')val_pred = model(seq_val)val_loss += criterion(val_pred, y_val).numpy()[0]avg_train_loss = train_loss / len(train_set)avg_val_loss = val_loss / len(val_set)# 存储训练和验证损失train_losses.append(avg_train_loss)val_losses.append(avg_val_loss)print('Epoch {}/{} - Train Loss: {:.4f} - Val Loss: {:.4f}'.format(epoch + 1, epochs, avg_train_loss, avg_val_loss))print('\nDuration: {:.0f} seconds'.format(time.time() - start_time))# 可视化训练和验证损失
plt.figure(figsize=(8, 5))
plt.plot(range(1, epochs + 1), train_losses, label='Train Loss')
plt.plot(range(1, epochs + 1), val_losses, label='Val Loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('CNN_Loss')
plt.legend()
plt.show()


六、模型预测

将数据按 window_size 一组分段,每次输入一段后,会输出一个预测的值 y_pred,y_pred 与每段之后的第 window_size + 1 个数据作为对比值,用于计算损失函数。

例如前 5 个数据为 (1,2,3,4,5),取前 4 个进行 CNN 预测,得出的值与 (5) 比较计算 loss。这里使用每组 13 个数据,最后一个数据作评估值,即 window_size=12

# 六、模型预测
"""
将数据按window_size一组分段,每次输入一段后,会输出一个预测的值y_pred
y_pred与每段之后的window_size+1个数据作为对比值,用于计算损失函数
例如前5个数据为(1,2,3,4,5),取前4个进行CNN预测,得出的值与(5)比较计算loss
这里使用每组13个数据,最后一个数据作评估值,即window_size=12
"""
# 选取序列最后12个值开始预测
preds = train_scal_data[-window_size:]
y_pred1 = []
model.eval()  # 设置成eval模式
# 循环的每一步表示向时间序列向后滑动一格
for seq, y_train in preds:# 每次更新参数前都梯度归零和初始化# 转换成conv1d的input size(batch size, channel, series length)seq = paddle.reshape(seq, [1, 1, -1])seq = paddle.to_tensor(seq, dtype='float32')result = model(seq)y_pred1.append(result)print("当前预测值:", y_pred1)
y_pred1 = np.array(y_pred1)
y_pred1 = y_pred1.reshape(-1, 1)
print("完整预测值:", y_pred1)# 预测结果反归一化,还原真实值
true_predictions = scaler.inverse_transform(y_pred1).reshape(-1, 1)# 预测结果可视化
sns.set(font='SimHei')  # 设置Seaborn字体
plt.figure(figsize=(8, 5))
plt.plot(train_data[-window_size:], label='true_value')  # 绘制真实值
plt.plot(true_predictions, label='predicted_value')  # 绘制预测值
plt.title("真实值和预测值对比结果", fontsize=14)
plt.xlabel("最后12个值", fontsize=12)
plt.ylabel("10cm湿度(kg/m2)", fontsize=12)
plt.yticks(fontsize=12)
plt.xticks(fontsize=12)
plt.grid(True)
plt.legend()
plt.show()

完整预测值:

[[-0.8811799 ]
 [-0.31046718]
 [-0.09406683]
 [ 0.29082218]
 [ 0.64678204]
 [ 0.4292445 ]
 [ 0.11846957]
 [-0.17343275]
 [-0.36173454]
 [-0.55860955]
 [-0.6944711 ]
 [-0.6295543 ]]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/453542.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于深度学习的SSVEP分类算法简介

基于深度学习的SSVEP分类算法简介 1、目标与范畴2、深度学习的算法介绍3、参考文献 1、目标与范畴 稳态视觉诱发电位(SSVEP)是指当受试者持续注视固定频率的闪光或翻转刺激时,在大脑枕-额叶区域诱发的与刺激频率相关的电生理信号。与P300、运…

从领域外到领域内:LLM在Text-to-SQL任务中的演进之路

导语 本文介绍了ODIS框架,这是一种新颖的Text-to-SQL方法,它结合了领域外示例和合成生成的领域内示例,以提升大型语言模型在In-context Learning中的性能。 标题:Selective Demonstrations for Cross-domain Text-to-SQL会议&am…

计算机网络第6章(应用层)

6.1、应用层概述 我们在浏览器的地址中输入某个网站的域名后,就可以访问该网站的内容,这个就是万维网WWW应用,其相关的应用层协议为超文本传送协议HTTP 用户在浏览器地址栏中输入的是“见名知意”的域名,而TCP/IP的网际层使用IP地…

ubuntu离线安装k8s

目录 一、前期准备 二、安装前配置 三、安装docker 四、安装cri-dockerd 五、部署k8s master节点 六、整合kubectl与cri-dockerd 七、网络等插件安装 八、常见问题及解决方法 一、前期准备 ①ubuntu系统 本地已安装ubuntu系统,lsb_release -a命令查看版本信…

论文阅读-CARD:一种针对复制元数据服务器集群的拥塞感知请求调度方案

论文名称:CARD: A Congestion-Aware Request Dispatching Scheme for Replicated Metadata Server Cluster 摘要 复制元数据服务器集群(RMSC)在分布式文件系统中非常高效,同时面对数据驱动的场景(例如,大…

计算机网络——03网络核心

网络核心 网络核心 网络核心:路由器的网络状态基本问题:数据怎样通过网络进行传输 电路交换:为每个呼叫预留一条专有电路分组交换 将要传送的数据分成一个个单位:分组将分组从一个路由器传到相邻路由器(hop&#xff…

JavaScript鼠标拖放(Drag and Drop)

🧑‍🎓 个人主页:《爱蹦跶的大A阿》 🔥当前正在更新专栏:《VUE》 、《JavaScript保姆级教程》、《krpano》、《krpano中文文档》 ​ ​ ✨ 前言 拖放是现代界面不可或缺的交互方式之一。本文将介绍如何用JavaScript…

Django前后端分离之后端实践

django-admin startproject djweb 生成djweb项目 django-admin startapp news 生成news应用 配置models文件 class NewInfo(models.Model):title models.CharField(max_length30)content models.TextField()b_date models.DateField()read models.IntegerFie…

代码随想录算法训练营第18天 | 513.找树左下角的值, 112. 路径总和,113. 路径总和 ||,106.从中序与后序遍历序列构造二叉树

二叉树理论基础: https://programmercarl.com/%E4%BA%8C%E5%8F%89%E6%A0%91%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html#%E7%AE%97%E6%B3%95%E5%85%AC%E5%BC%80%E8%AF%BE 513.找树左下角的值 题目链接:https://leetcode.cn/problems/find-bottom-left…

【算法与数据结构】647、516、LeetCode回文子串+最长回文子序列

文章目录 一、647、回文子串二、516、最长回文子序列三、完整代码 所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。 一、647、回文子串 思路分析:判断一个字符串是否为回文串那么必须确定回文串的所在区间,而一维…

Quartus IP 之mif与hex文件创建与使用

一、mif与hex概述 ROM IP的数据需要满足断电不丢失的要求,ROM IP数据的文件格式一般有三种文件格式:.mif、.hex、.coe,Xilinx与Intel Altera支持的ROM IP数据文件格式如下: Xilinx与Altera支持的ROM文件格式 Alterahex、mifAM&am…

Java实现婚恋交友网站 JAVA+Vue+SpringBoot+MySQL

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 会员管理模块2.3 新闻管理模块2.4 相亲大会管理模块2.5 留言管理模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 会员信息表3.2.2 新闻表3.2.3 相亲大会表3.2.4 留言表 四、系统展示五、核心代码5.…