51单片机之LED灯模块篇

御风以翔

破浪以飏


🎥个人主页

🔥个人专栏


目录

点亮一盏LED灯 

LED的组成原理

LED的硬件模型

点亮一盏LED灯的程序设计

 LED灯闪烁

LED流水灯 

 独立按键控制LED灯亮灭

独立按键的组成原理

独立按键的硬件模型

  独立按键控制LED灯状态

按键的抖动

 独立按键控制LED灯移位

位移的原理

点亮一盏LED灯 

LED的组成原理

<1>LED即发光二极管,是一种有方向性的半导体固体发光器件,在单片机上是贴片形式

<2>LED的 阳极 串联一个电阻,然后连接到电源VCC,而LED的 阴极 连接到单片机的P2口,如果想把LED灯点亮,就把单片机相关的 I/O 口赋为低电平

<3>单片机中,用 0 表示低电频,用 1 表示高电频

LED的硬件模型

我们可以看到LED连上了单片机的管脚。而单片机需要通过CPU控制寄存器的值,进而通过驱动器加大控制力度,由控制电路输出高低电平

CPU访问寄存器为 1 输出高电频,为 0 输出低电频

点亮LED灯的程序就是让 LED = 0 (低电平),熄灭LED灯的程序就是 LED = 1(高电平)

所以我们只要在对应的寄存器上写 0 或 1 ,即可控制LED的亮灭

点亮一盏LED灯的程序设计

根据硬件原理图和寄存器定义,来对操作寄存器地址,实现灯的点亮

因为单片机只能识别十六进制,所以 1111 1110 要写成0xFE

#include <REGX52.H>void  main()
{while(1){P2 = 0xFE;}
}

我们发现这里编译器并没有报任何的错误

于是我们选择生成文件,将代码下载到板子上

我们找到对应板子的型号,然后打开程序文件,点击下载

这样我们就点亮了一盏LED灯啦

 LED灯闪烁

<1>通过STC-ISP拷贝延时代码

<2>加入延时,方便观察灯的闪烁

<3>加上while循环,循环的表达式的值为真,LED就会反复不停的亮和灭

#include <REGX52.H>
#include <INTRINS.H>void Delay500ms(void)	//@12.000MHz
{unsigned char data i, j, k;_nop_();i = 4;j = 205;k = 187;do{do{while (--k);} while (--j);} while (--i);
}void  main()
{while(1){P2 = 0xFE;Delay500ms();P2 = 0xFF;Delay500ms();}
}

单片机闪烁

LED流水灯 

我们学习了点亮LED小灯闪烁,现在我们就可以进一步的让LED灯依次亮起来

这就是我们日常中的流水灯

从之前的代码操作可知,我们可以通过对P2的控制来实现8个LED灯的亮灭

我们只要对P2依次赋值就可以啦:

0xFE、0xFD、0xFB、0xF7、0xEF、0xDF、0xBF、0x7F

#include <REGX52.H>
#include <INTRINS.H>void Delay500ms(void)	//@12.000MHz
{unsigned char data i, j, k;_nop_();i = 4;j = 205;k = 187;do{do{while (--k);} while (--j);} while (--i);
}void  main()
{while(1){P2=0xFE;     //1111 1110Delay500ms();P2=0xFD;     //1111 1101Delay500ms();P2=0xFB;     //1111 1011Delay500ms();P2=0xF7;     //1111 0111Delay500ms();P2=0xEF;     //1110 1111Delay500ms();P2=0xDF;     //1101 1111Delay500ms();P2=0xBF;     //1011 1111Delay500ms();P2=0x7F;     //0111 1111Delay500ms();}
}

每次延迟500毫秒太单调了,我们可以让流水灯想延迟多少行秒就可以延迟多少行秒

51单片机的数据类型

我们先将 1毫秒 的代码拷贝到我们的编译器上

然后将代码改成 传参类型

void Delay1ms(unsigned int xms)	//@12.000MHz
{unsigned char data i, j;while(xms){i = 2;j = 239;do{while (--j);} while (--i);xms--;}
}

这样我们传多少毫秒就延迟多少毫秒

void  main()
{while(1){P2=0xFE;     //1111 1110Delay1ms(100);P2=0xFD;     //1111 1101Delay1ms(200);P2=0xFB;     //1111 1011Delay1ms(300);P2=0xF7;     //1111 0111Delay1ms(400);P2=0xEF;     //1110 1111Delay1ms(400);P2=0xDF;     //1101 1111Delay1ms(300);P2=0xBF;     //1011 1111Delay1ms(200);P2=0x7F;     //0111 1111Delay1ms(100);}
}

 独立按键控制LED灯亮灭

独立按键的组成原理

独立按键直接用 I/O 口线构成的单个按键电路,其特点是每个按键单独占用一根 I/O 口线,每个按键的工作不会影响其他 I/O 口线的状态

独立按键的硬件模型

<1>独立按键电路构成是由各个按键的一个管脚连接在一起接地,按键其他引脚分别接到单片机 IO 口

<2>单片机的 IO 口既可作为输出也可作为输入使用,当检测按键时用的是它的输入功能,独立按键的一端接地, 另一端与单片机的 I/O 口相连

<3>开始时先给该 IO 口赋一高电频,然后让单片机不断地检测该 I/O 口是否变为低电频,当按键闭合时,即相当于该 I/O 口通过按键与地相连,变成低电频,程序一旦检测到I/O 口变为低电频则说明按键被按下,然后执行相应的指令

当按下k1时,LED小灯D1亮起,松开按键时D1灭掉

#include <REGX52.H>void main()
{P2_0 = 1;       while(1){if(P3_1 == 0)   //检测按键判断是否点亮LED灯{P2_0 = 0;   }else{P2_0 = 1;   }}
}

  独立按键控制LED灯状态

按键的抖动

通常按键所用的开关都是机械弹性开关,当机械触点断开、闭合时,由于机械触点的弹性作用,一个按键开关在闭合时不会马上就稳定接通,在断开时也不会一下子彻底断开,而是在闭合和断开的瞬间伴随了一连串的 抖动

按键的效抖

<1>硬件消抖:按键上并联一个电容,利用电容的充放电特性对抖动过程中产生的电压毛刺进行平滑处理,从而实现消抖

<2>软件消抖:通过对按键状态进行两次检测,并引入适当的延时,从而忽略前沿抖动的影响

#include <REGX52.H>void Delay(unsigned int xms)	//单位毫秒的延时函数
{unsigned char i, j;while(xms){i = 2;j = 239;do{while (--j);} while (--i);xms--;}
}void main()
{while(1){if(P3_1 == 0)             //当按键按下时K1会与地相连 引脚处会被置低电频,D1点亮{Delay(20);            //延迟20毫秒while(P3_1 == 0);     //当再次按下K1键,引脚处会被置高电频Delay(20);P2_0 =~P2_0;          //D1按位取反,回到高电频,D1关闭}}
}

首先检测按键是否处于按下状态,然后进行一段较短时间的延时,再次检测按键状态。如果确认按键仍然被按下,则执行相应的操作(在示例中为 取反  操作),并延时一段时间来避免连续按下造成的快速闪烁。最后,使用一个 while循环 来等待按键被释放

 独立按键控制LED灯移位

通过控制独立按键K1、K2来实现左右移位

位移的原理

#include <REGX52.H>void Delay(unsigned int xms)   //1毫秒的延迟函数	
{unsigned char i, j;while(xms--){i = 2;j = 239;do{while (--j);} while (--i);}
}unsigned char LEDNum;          //全局变量初始化为0
void main()
{P2 = ~0x01;                //给P2按位取反就是点亮D1while(1){if(P3_1 == 0)          //检测K1键有没有按下{Delay(20);            while(P3_1 == 0);      //消抖Delay(20);LEDNum++;              //LEDNum自增//随着K1按键按下,LEDNum二进制变大,LED灯也会往右依次亮起if(LEDNum>=8)          //处理边界问题LEDNum = 0;P2 = ~(0x01<<LEDNum);  //LED的第LEDNum位点亮}if(P3_0 == 0){Delay(20);while(P3_0 == 0);Delay(20);if(LEDNum == 0)LEDNum = 7;elseLEDNum--;P2 = ~(0x01<<LEDNum);}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/453552.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity中blendtree和state间的过渡

混合树状态之间的过渡 如果属于此过渡的当前状态或下一状态是混合树状态&#xff0c;则混合树参数将出现在 Inspector 中。通过调整这些值可预览在混合树值设置为不同配置时的过渡表现情况。 如果混合树包含不同长度的剪辑&#xff0c;您应该测试在显示短剪辑和长剪辑时的过渡表…

ubuntu22.04 经常死机,鼠标,键盘无响应

一、现象说明 1. 开机一小时后&#xff0c;突然之间网络掉线&#xff0c;鼠标、键盘无反应。 2.强制重启后&#xff0c;恢复正常。 3.多次重复出现该问题。 二、环境说明&#xff1a;内核、显卡 三、异常日志&#xff1a; /var/log/syslog: 四、问题解答&#xff1a; 1.…

ChatGPT Plus如何升级?信用卡付款失败怎么办?如何使用信用卡升级 ChatGPT Plus?

ChatGPT Plus是OpenAI提供的一种高级服务&#xff0c;它相较于标准版本&#xff0c;提供了更快的响应速度、更强大的功能&#xff0c;并且用户可以优先体验到新推出的功能。 尽管许多用户愿意支付 20 美元的月费来订阅 GPT-4&#xff0c;但在实际支付过程中&#xff0c;特别是…

【项目实践03】【布隆过滤器】

文章目录 一、前言二、项目背景三、实现方案1. 谷歌 布隆过滤器2. Redis 布隆过滤器 四、思路延伸1. 布隆过滤器的实现原理2. 布隆过滤器的一些扩展3. 布谷鸟过滤器 五、参考内容 一、前言 本系列用来记录一些在实际项目中的小东西&#xff0c;并记录在过程中想到一些小东西&a…

神经网络 | 基于 CNN 模型实现土壤湿度预测

Hi&#xff0c;大家好&#xff0c;我是半亩花海。在现代农业和环境监测中&#xff0c;了解土壤湿度的变化对于作物生长和水资源管理至关重要。通过深度学习技术&#xff0c;特别是卷积神经网络&#xff0c;我们可以利用过去的土壤湿度数据来预测未来的湿度趋势。本文将使用 Pad…

基于深度学习的SSVEP分类算法简介

基于深度学习的SSVEP分类算法简介 1、目标与范畴2、深度学习的算法介绍3、参考文献 1、目标与范畴 稳态视觉诱发电位&#xff08;SSVEP&#xff09;是指当受试者持续注视固定频率的闪光或翻转刺激时&#xff0c;在大脑枕-额叶区域诱发的与刺激频率相关的电生理信号。与P300、运…

从领域外到领域内:LLM在Text-to-SQL任务中的演进之路

导语 本文介绍了ODIS框架&#xff0c;这是一种新颖的Text-to-SQL方法&#xff0c;它结合了领域外示例和合成生成的领域内示例&#xff0c;以提升大型语言模型在In-context Learning中的性能。 标题&#xff1a;Selective Demonstrations for Cross-domain Text-to-SQL会议&am…

计算机网络第6章(应用层)

6.1、应用层概述 我们在浏览器的地址中输入某个网站的域名后&#xff0c;就可以访问该网站的内容&#xff0c;这个就是万维网WWW应用&#xff0c;其相关的应用层协议为超文本传送协议HTTP 用户在浏览器地址栏中输入的是“见名知意”的域名&#xff0c;而TCP/IP的网际层使用IP地…

ubuntu离线安装k8s

目录 一、前期准备 二、安装前配置 三、安装docker 四、安装cri-dockerd 五、部署k8s master节点 六、整合kubectl与cri-dockerd 七、网络等插件安装 八、常见问题及解决方法 一、前期准备 ①ubuntu系统 本地已安装ubuntu系统&#xff0c;lsb_release -a命令查看版本信…

论文阅读-CARD:一种针对复制元数据服务器集群的拥塞感知请求调度方案

论文名称&#xff1a;CARD: A Congestion-Aware Request Dispatching Scheme for Replicated Metadata Server Cluster 摘要 复制元数据服务器集群&#xff08;RMSC&#xff09;在分布式文件系统中非常高效&#xff0c;同时面对数据驱动的场景&#xff08;例如&#xff0c;大…

计算机网络——03网络核心

网络核心 网络核心 网络核心&#xff1a;路由器的网络状态基本问题&#xff1a;数据怎样通过网络进行传输 电路交换&#xff1a;为每个呼叫预留一条专有电路分组交换 将要传送的数据分成一个个单位&#xff1a;分组将分组从一个路由器传到相邻路由器&#xff08;hop&#xff…

JavaScript鼠标拖放(Drag and Drop)

&#x1f9d1;‍&#x1f393; 个人主页&#xff1a;《爱蹦跶的大A阿》 &#x1f525;当前正在更新专栏&#xff1a;《VUE》 、《JavaScript保姆级教程》、《krpano》、《krpano中文文档》 ​ ​ ✨ 前言 拖放是现代界面不可或缺的交互方式之一。本文将介绍如何用JavaScript…