《Python 网络爬虫简易速速上手小册》第1章:Python 网络爬虫基础(2024 最新版)

在这里插入图片描述

文章目录

  • 1.1 网络爬虫简介
    • 1.1.1 重点基础知识讲解
    • 1.1.2 重点案例:社交媒体数据分析
    • 1.1.3 拓展案例1:电商网站价格监控
    • 1.1.4 拓展案例2:新闻聚合服务
  • 1.2 网络爬虫的工作原理
    • 1.2.1 重点基础知识讲解
    • 1.2.2 重点案例:股票市场数据采集
    • 1.2.3 拓展案例 1:博客文章抓取
    • 1.2.4 拓展案例 2:酒店价格监控
  • 1.3 网络爬虫的法律与道德考量
    • 1.3.1 重点基础知识讲解
    • 1.3.2 重点案例:社交媒体数据抓取
    • 1.3.3 拓展案例 1:网站内容聚合
    • 1.3.4 拓展案例 2:在线商店价格监控

1.1 网络爬虫简介

1.1.1 重点基础知识讲解

网络爬虫,也称为网页蜘蛛或网页机器人,是一种自动化的网络程序,设计用来从万维网上下载网页,提取出有用的信息或者资源。想要精通网络爬虫,首先得了解几个基础概念:

  • HTML & CSS: 网页的骨架和皮肤。HTML 定义了网页的结构,而 CSS 则负责外观。掌握它们,你才能让爬虫知道去哪儿找数据。
  • JavaScript: 许多现代网站利用 JavaScript 动态加载内容。了解基础的 JavaScript 及其如何影响网页内容的加载,对爬取动态内容至关重要。
  • HTTP/HTTPS 协议: 这是爬虫与网站交流的语言。理解请求(Request)和响应(Response)的基本原理,能帮你更好地设计爬虫。
  • APIs: 许多网站提供 APIs 来让开发者合法地访问数据。利用 APIs 能够是一个更高效、更稳定的数据抓取方式。

接下来,让我们通过几个案例,深入探索网络爬虫在实际生产中的应用。

1.1.2 重点案例:社交媒体数据分析

假设你是一个数据分析师,需要从 Twitter 抓取关于特定话题的推文,进行情感分析。使用 Python 的 Tweepy 库,可以方便地接入Twitter API,抓取数据。这个案例不仅实用,而且非常贴近现实生产,社交媒体数据分析在市场研究、公共舆论监控等领域有广泛应用。

import tweepy# 初始化API
auth = tweepy.OAuthHandler('YOUR_CONSUMER_KEY', 'YOUR_CONSUMER_SECRET')
auth.set_access_token('YOUR_ACCESS_TOKEN', 'YOUR_ACCESS_TOKEN_SECRET')
api = tweepy.API(auth)# 抓取特定话题的推文
for tweet in tweepy.Cursor(api.search, q="#特定话题", lang="en").items(100):print(tweet.text)

1.1.3 拓展案例1:电商网站价格监控

想象你是一个电商企业的竞争情报分析师,需要监控竞争对手的产品价格。使用 Python 的 BeautifulSoup 库可以解析 HTML 页面,抓取产品价格信息。这个案例在电子商务竞争分析中非常常见。

import requests
from bs4 import BeautifulSoup# 请求网页
response = requests.get('http://example.com/product')
soup = BeautifulSoup(response.text, 'html.parser')# 解析价格信息
price = soup.find('span', class_='product-price').text
print(f"产品价格: {price}")

1.1.4 拓展案例2:新闻聚合服务

假设你正在开发一个新闻聚合服务,需要从多个新闻网站抓取最新的新闻标题和链接。使用 Python 的 Requests 库来发送HTTP请求,搭配 BeautifulSoup 进行内容解析。这个案例在信息聚合和内容提供服务中极为常见。

import requests
from bs4 import BeautifulSoup# 请求新闻网页
response = requests.get('http://news.example.com')
soup = BeautifulSoup(response.text, 'html.parser')# 抓取新闻标题和链接
for news_item in soup.find_all('div', class_='news-item'):title = news_item.find('h2').textlink = news_item.find('a')['href']print(f"标题: {title}, 链接: {link}")

通过这三个案例,我们不仅能看到 Python 在网络爬虫应用中的强大能力,还能体会到网络爬虫技术在不同行业中的广泛应用。这些案例涵盖了从社交媒体分析、价格监控到新闻聚合的多种实用场景,展示了网络爬虫技术如何帮助我们从大量网页中提取有价值的信息。

在这里插入图片描述


1.2 网络爬虫的工作原理

1.2.1 重点基础知识讲解

要掌握网络爬虫的工作原理,我们首先需要理解几个关键概念:

  • 请求 (Request):这是网络爬虫向服务器发出的“请给我数据”的呼唤。通常分为 GET 请求(请求数据)和 POST 请求(提交数据)。
  • 响应 (Response):当服务器接收到请求后,它回送的数据就是响应。响应中包含了许多有用的信息,包括请求的网页数据。
  • 解析 (Parsing):获取响应后,爬虫需要从中提取有用的信息,这个过程称为解析。常用的解析工具包括 BeautifulSoup 和 lxml 。
  • 数据存储 (Data Storage):爬虫从网页中提取的数据需要被存储起来,以便进一步的处理或分析。存储方式有很多种,包括但不限于数据库、文件或内存中。

接下来,我们将通过几个实际案例来深入探讨网络爬虫的工作原理。

1.2.2 重点案例:股票市场数据采集

假设你是一名金融分析师,需要实时追踪特定股票的价格变动。使用 Python 的 requests 库可以轻松地实现这一目标。通过发送 GET 请求到股票信息网站,然后解析响应数据获取股价信息。这个案例在金融分析和市场监控中非常实用。

import requests
from bs4 import BeautifulSoup# 发送 GET 请求
url = "http://example.com/stock/AAPL"
response = requests.get(url)# 解析响应内容
soup = BeautifulSoup(response.content, 'html.parser')
price = soup.find('div', class_='stock-price').text
print(f"苹果股价: {price}")

1.2.3 拓展案例 1:博客文章抓取

想象你正在构建一个个人项目,需要从你最喜欢的技术博客中抓取最新文章的标题和链接,以便快速浏览。这时,你可以使用 Python 的 requestsBeautifulSoup 来完成这项任务。这个案例对于内容聚合器或个人学习资源库的构建非常有帮助。

import requests
from bs4 import BeautifulSoup# 请求博客首页
response = requests.get('https://techblog.example.com')
soup = BeautifulSoup(response.text, 'html.parser')# 抓取文章标题和链接
articles = []
for article in soup.find_all('article'):title = article.find('h2').textlink = article.find('a')['href']articles.append({'title': title, 'link': link})for article in articles:print(f"标题: {article['title']}, 链接: {article['link']}")

1.2.4 拓展案例 2:酒店价格监控

假设你是一名旅行爱好者,希望监控某旅游网站上目的地酒店的价格,以便在价格最低时预订。通过 Python 的 requests 库发送请求,并利用 BeautifulSoup 解析响应内容中的酒店价格信息。这个案例对于预算有限的旅行者来说非常实用。

import requests
from bs4 import BeautifulSoup# 发送请求到酒店列表页面
response = requests.get('http://travel.example.com/hotels?destination=paris')
soup = BeautifulSoup(response.text, 'html.parser')# 解析酒店价格
hotels = []
for hotel in soup.find_all('div', class_='hotel-item'):name = hotel.find('h2').textprice = hotel.find('span', class_='price').texthotels.append({'name': name, 'price': price})for hotel in hotels:print(f"酒店: {hotel['name']}, 价格: {hotel['price']}")

通过这些案例,我们不仅理解了网络爬虫的基本工作原理,还学习了如何在实际生产中应用这些原理来解决实际问题。无论是金融市场的数据采集,个人兴趣的内容聚合,还是生活中的价格监控,网络爬虫技术都能提供强大的支持。

在这里插入图片描述


1.3 网络爬虫的法律与道德考量

1.3.1 重点基础知识讲解

在开发和部署网络爬虫时,法律和道德考量是不可或缺的一部分。违反这些准则可能导致法律后果,包括被禁止访问目标网站、面临诉讼甚至罚款。理解以下几个关键点是至关重要的:

  • robots.txt 协议:这是网站告知网络爬虫哪些部分可被爬取、哪些部分禁止爬取的标准。遵守 robots.txt 是网络爬虫开发的基本礼仪。
  • 版权法:网页上的内容,如文本、图片和视频,通常受版权法保护。未经授权擅自抓取和使用这些内容可能会侵犯版权。
  • 隐私法:在处理个人数据(如社交媒体帖子、论坛评论等)时,必须遵守适用的隐私法律和规定,如 GDPR 或 CCPA。
  • 访问频率和负载:过度请求网站可能会对其正常运营造成干扰,这不仅是一个道德问题,也可能引起法律问题。

1.3.2 重点案例:社交媒体数据抓取

假设你是一家营销公司的数据分析师,需要分析特定话题在社交媒体上的讨论趋势。使用 Python 来抓取 Twitter 上的相关帖子是一个常见的做法。在这个过程中,确保遵循 Twitter 的使用条款和访问频率限制至关重要。

import tweepy# 初始化 Tweepy API
auth = tweepy.OAuthHandler('YOUR_CONSUMER_KEY', 'YOUR_CONSUMER_SECRET')
auth.set_access_token('YOUR_ACCESS_TOKEN', 'YOUR_ACCESS_TOKEN_SECRET')
api = tweepy.API(auth, wait_on_rate_limit=True)# 搜索帖子
for tweet in tweepy.Cursor(api.search, q="#特定话题", lang="en", tweet_mode='extended').items(100):print(tweet.full_text)

1.3.3 拓展案例 1:网站内容聚合

你正在开发一个聚合多个新闻源内容的网站。在抓取新闻文章并展示在你的网站上之前,确保你有权使用这些内容,或者只展示文章的标题和一小段摘要,并链接回原始文章,以避免侵犯版权。

import requests
from bs4 import BeautifulSoup# 请求新闻网站
response = requests.get('https://news.example.com')
soup = BeautifulSoup(response.text, 'html.parser')# 解析并展示新闻标题和链接
for news_item in soup.select('.news-title'):title = news_item.textlink = news_item.find('a')['href']print(f"标题: {title}, 链接: {link}")

1.3.4 拓展案例 2:在线商店价格监控

你为一家价格比较网站工作,负责监控不同在线商店的产品价格。在编写爬虫抓取这些信息时,重要的是要控制请求的频率,避免因为发送过多请求而对商店的网站造成负担。

import time
import requests
from bs4 import BeautifulSoupproduct_urls = ['http://onlinestore.example.com/product1', 'http://onlinestore.example.com/product2']for url in product_urls:# 发送请求response = requests.get(url)soup = BeautifulSoup(response.text, 'html.parser')# 解析产品价格price = soup.find('span', class_='price').textprint(f"产品价格: {price}")# 间隔时间,避免过快请求time.sleep(10)

通过以上案例,我们看到,在实际工作中使用网络爬虫时,遵守法律规定和道德标准是非常重要的。这不仅有助于保护你的项目免受法律风险,也是对其他网站运营者的尊重和负责任的表现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/453643.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

1802907-97-6,炔基PEG5甲基四嗪,具有良好的水溶性和生物相容性

您好,欢迎来到新研之家 文章关键词:1802907-97-6,甲基四嗪-五聚乙二醇-炔,甲基四嗪-五聚乙二醇-炔基,炔基PEG5甲基四嗪,Methyltetrazine-PEG5-alkyne ,Alkyne-PEG5-Methyltetrazine 一、基本信…

WebChat——一个开源的聊天应用

Web Chat 是开源的聊天系统,支持一键免费部署私人Chat网页的应用程序。 开源地址:https://github.com/loks666/webchat 目录树 TOC 👋🏻 开始使用 & 交流🛳 开箱即用 A 使用 Docker 部署B 使用 Docker-compose…

人工智能福利站,初识人工智能,图神经网络学习,第一课

🏆作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。 🏆多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。 🎉欢迎 👍点赞✍评论…

(2)(2.13) Rockblock Satellite Modem

文章目录 前言 1 支持的MAVLink命令信息 2 设置 3 使用方法 4 数据成本 5 参数 前言 !Note 该功能仅适用于 ArduPilot 4.4 或更高版本,并且要求飞行控制器支持 LUA 脚本(LUA Scripts)。 RockBLOCK 卫星调制解调器可实现与 ArduPilot 飞行器的全球…

C++ 语法文件

程序运行时产生的数据都属于临时数据,程序结束就会被释放。 通过文件可以可以将数据持久化 c中对文件操作需要包含头文件fstream 文件的类型分为两种 1.文本文件 文件以文本的ASCII码形式存储在计算机中 2.二进制文件 稳重以文本的二进制形式存储在计算机中 用…

MySQL 小技巧:利用 xtrabackup 完全备份,增量备份及还原

案例:利用 xtrabackup 8.0 完全备份,增量备份及还原 MySQL8.0 在面对海量数据时,我们无法做到每天全量备份,因此 只能每周做一次全量备份。 而每天的话则进行增量备份,确保数据安全。 注意点:MySQL 8.0.26 版本对应需要…

三层交换组网实验(华为)

思科设备参考:三层交换组网实验(思科) 一,技术简介 三层交换技术的出现,解决子网必须依赖路由器进行管理的问题,解决传统路由器低速、复杂所造成的网络瓶颈问题。一个具有三层交换功能的设备可简单理解为…

1-3 动手学深度学习v2-线性回归的从零开始实现-笔记

手动创建训练数据集 根据带有噪声的线性模型构造一个人造数据集。我们使用线性模型参数 w [ 2 , − 3.4 ] T \pmb{w} [2,-3.4]^{T} w[2,−3.4]T、 b 4.2 b 4.2 b4.2和噪声项 ϵ \epsilon ϵ生成数据集及其标签: y X w b ϵ \pmb{y} \pmb{Xw}b\epsilon yXw…

一起玩儿Proteus仿真(C51)——03. 直流电机的启停、加减速和正反转仿真(L298)(一)

摘要:本文介绍直流电机的驱动原理图和PWM信号的输出方法 今天来用Proteus和C51做一个直流电机驱动程序的仿真实验。在这个实验中,通过按键可以控制电动机的启动、停止、加速、减速、正转和反转。在这里,主要使用到的器件除了C51最小系统之外&…

机器学习超参数优化算法(贝叶斯优化)

文章目录 贝叶斯优化算法原理贝叶斯优化的实现(三种方法均有代码实现)基于Bayes_opt实现GP优化基于HyperOpt实现TPE优化基于Optuna实现多种贝叶斯优化 贝叶斯优化算法原理 在贝叶斯优化的数学过程当中,我们主要执行以下几个步骤: …

【2024最新ChatGPT干货总结 升级GPT-4.0教程】含实用prompt技巧

2024最新ChatGPT干货总结 & 升级GPT-4.0教程!含实用prompt技巧 前言GPT-4.0 与 3.5的差距?一些实例展示个人感受 一些实用的prompts用法?prompt5步法,分为下面5个步骤:关于5步法的说明小结 如何快速升级地表最强GP…

Go语言Gin框架安全加固:全面解析SQL注入、XSS与CSRF的解决方案

前言 在使用 Gin 框架处理前端请求数据时,必须关注安全性问题,以防范常见的攻击。本文将探讨 Gin 框架中常见的安全问题,并提供相应的处理方法,以确保应用程序的稳健性和安全性。 处理前端请求数据时,确保应用程序的…