MMLAB的实例分割算法mmsegmentation

        当谈及实例分割时,人们往往只会提到一些早期的经典算法,比如 PSP-Net、DeepLabv3、DeepLabv3+ 和 U-Net。然而,实例分割领域已经在过去的五六年中蓬勃发展,涌现出许多新的算法。今天,让我们一起探索这个算法库,它包含了众多最新的实例分割算法。后面,我将会为大家详细介绍如何使用这个算法库。总的来说,若你关注实例分割领域的最新进展,这个算法库值得你拥有。

1、目前支持的算法:


- [x] [SAN (CVPR'2023)](configs/san/)
- [x] [VPD (ICCV'2023)](configs/vpd)
- [x] [DDRNet (T-ITS'2022)](configs/ddrnet)
- [x] [PIDNet (ArXiv'2022)](configs/pidnet)
- [x] [Mask2Former (CVPR'2022)](configs/mask2former)
- [x] [MaskFormer (NeurIPS'2021)](configs/maskformer)
- [x] [K-Net (NeurIPS'2021)](configs/knet)
- [x] [SegFormer (NeurIPS'2021)](configs/segformer)
- [x] [Segmenter (ICCV'2021)](configs/segmenter)
- [x] [DPT (ArXiv'2021)](configs/dpt)
- [x] [SETR (CVPR'2021)](configs/setr)
- [x] [STDC (CVPR'2021)](configs/stdc)
- [x] [BiSeNetV2 (IJCV'2021)](configs/bisenetv2)
- [x] [CGNet (TIP'2020)](configs/cgnet)
- [x] [PointRend (CVPR'2020)](configs/point_rend)
- [x] [DNLNet (ECCV'2020)](configs/dnlnet)
- [x] [OCRNet (ECCV'2020)](configs/ocrnet)
- [x] [ISANet (ArXiv'2019/IJCV'2021)](configs/isanet)
- [x] [Fast-SCNN (ArXiv'2019)](configs/fastscnn)
- [x] [FastFCN (ArXiv'2019)](configs/fastfcn)
- [x] [GCNet (ICCVW'2019/TPAMI'2020)](configs/gcnet)
- [x] [ANN (ICCV'2019)](configs/ann)
- [x] [EMANet (ICCV'2019)](configs/emanet)
- [x] [CCNet (ICCV'2019)](configs/ccnet)
- [x] [DMNet (ICCV'2019)](configs/dmnet)
- [x] [Semantic FPN (CVPR'2019)](configs/sem_fpn)
- [x] [DANet (CVPR'2019)](configs/danet)
- [x] [APCNet (CVPR'2019)](configs/apcnet)
- [x] [NonLocal Net (CVPR'2018)](configs/nonlocal_net)
- [x] [EncNet (CVPR'2018)](configs/encnet)
- [x] [DeepLabV3+ (CVPR'2018)](configs/deeplabv3plus)
- [x] [UPerNet (ECCV'2018)](configs/upernet)
- [x] [ICNet (ECCV'2018)](configs/icnet)
- [x] [PSANet (ECCV'2018)](configs/psanet)
- [x] [BiSeNetV1 (ECCV'2018)](configs/bisenetv1)
- [x] [DeepLabV3 (ArXiv'2017)](configs/deeplabv3)
- [x] [PSPNet (CVPR'2017)](configs/pspnet)
- [x] [ERFNet (T-ITS'2017)](configs/erfnet)
- [x] [UNet (MICCAI'2016/Nat. Methods'2019)](configs/unet)
- [x] [FCN (CVPR'2015/TPAMI'2017)](configs/fcn)

方法

时间

题目

dsdl

Standard Description Language for DataSet

san

2013

Side adapter network for open-vocabulary semantic segmentation

unet

2015

U-net: Convolutional networks for biomedical image segmentation

erfnet

2017

Erfnet: Efficient residual factorized convnet for real-time semantic segmentation

fcn

2017

Fully convolutional networks for semantic segmentation

pspnet

2017

Pyramid Scene Parsing Network

bisenetv1_r18-d32

2018

Bisenet: Bilateral segmentation network for real-time semantic segmentation

encnet

2018

Context Encoding for Semantic Segmentation

icnet_r50-d8

2018

Icnet for real-time semantic segmentation on high-resolution images

nonlocal

2018

Non-local neural networks

psanet

2018

Psanet: Point-wise spatial attention network for scene parsing

upernet

2018

Unified perceptual parsing for scene understanding

ann

2019

Asymmetric non-local neural networks for semantic segmentation

apcnet

2019

Adaptive Pyramid Context Network for Semantic Segmentation

ccnet

2019

CCNet: Criss-Cross Attention for Semantic Segmentation

danet

2019

Dual Attention Network for Scene Segmentation

emanet_r50-d8

2019

Expectation-maximization attention networks for semantic segmentation

fastfcn

2019

Fastfcn: Rethinking dilated convolution in the backbone for semantic segmentation

fast_scnn

2019

Fast-scnn: Fast semantic segmentation network

hrnet

2019

Deep High-Resolution Representation Learning for Human Pose Estimation

gcnet

2019

Gcnet: Non-local networks meet squeeze-excitation networks and beyond

sem_fpn

2019

Panoptic feature pyramid networks

cgNet

2020

Cgnet: A light-weight context guided network for semantic segmentation

dnlnet

2020

Disentangled Non-Local Neural Networks

ocrnet

2020

Object-Contextual Representations for Semantic Segmentation

pointrend

2020

Pointrend: Image segmentation as rendering

setr

2020

Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

bisenetv2

2021

Bisenet v2: Bilateral network with guided aggregation for real-time semantic segmentation

dpt

2021

Vision Transformers for Dense Prediction

isanet_r50-d8

2021

OCNet: Object Context for Semantic Segmentation

knet

2021

{K-Net: Towards} Unified Image Segmentation

mae

2021

Masked autoencoders are scalable vision learners

mask2former

2021

Per-Pixel Classification is Not All You Need for Semantic Segmentation

maskformer

2021

Per-pixel classification is not all you need for semantic segmentation

segformer

2021

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers

segmenter

2021

Segmenter: Transformer for semantic segmentation

stdc

2021

Rethinking BiSeNet For Real-time Semantic Segmentation

Beit

2022

{BEiT}: {BERT} Pre-Training of Image Transformers

convnext

2022

A ConvNet for the 2020s

ddrnet

2022

Deep Dual-Resolution Networks for Real-Time and Accurate Semantic Segmentation of Traffic Scenes

pidnet

2022

PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller

poolformer

2022

Metaformer is actually what you need for vision

segnext

2022

SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation

VPD

2023

Unleashing Text-to-Image Diffusion Models for Visual Perception

2、支持的骨干网络:

- [x] ResNet (CVPR'2016)
- [x] ResNeXt (CVPR'2017)
- [x] [HRNet (CVPR'2019)](configs/hrnet)
- [x] [ResNeSt (ArXiv'2020)](configs/resnest)
- [x] [MobileNetV2 (CVPR'2018)](configs/mobilenet_v2)
- [x] [MobileNetV3 (ICCV'2019)](configs/mobilenet_v3)
- [x] [Vision Transformer (ICLR'2021)](configs/vit)
- [x] [Swin Transformer (ICCV'2021)](configs/swin)
- [x] [Twins (NeurIPS'2021)](configs/twins)
- [x] [BEiT (ICLR'2022)](configs/beit)
- [x] [ConvNeXt (CVPR'2022)](configs/convnext)
- [x] [MAE (CVPR'2022)](configs/mae)
- [x] [PoolFormer (CVPR'2022)](configs/poolformer)
- [x] [SegNeXt (NeurIPS'2022)](configs/segnext)

3、支持的数据集:


- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#cityscapes)
- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#pascal-voc)
- [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#ade20k)
- [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#pascal-context)
- [x] [COCO-Stuff 10k](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#coco-stuff-10k)
- [x] [COCO-Stuff 164k](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#coco-stuff-164k)
- [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#chase-db1)
- [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#drive)
- [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#hrf)
- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#stare)
- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#dark-zurich)
- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#nighttime-driving)
- [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#loveda)
- [x] [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#isprs-potsdam)
- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#isprs-vaihingen)
- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#isaid)
- [x] [Mapillary Vistas](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#mapillary-vistas-datasets)
- [x] [LEVIR-CD](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#levir-cd)
- [x] [BDD100K](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#bdd100K)
- [x] [NYU](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#nyu)

4、自定义个人任务:

当然如果以上无法满足,这里面提供了详细的教程与方便的接口,以供制作自己的数据集和设计自己的算法、主干网络、损失函数等。

5、参考文章:

  1. Welcome to MMSegmentation’s documentation! — MMSegmentation 1.2.2 documentation
  2. open-mmlab/mmsegmentation: OpenMMLab Semantic Segmentation Toolbox and Benchmark. (github.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/454478.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Bootstrap5 图片轮播

Bootstrap5 轮播样式表使用的是CDN资源 <title>亚丁号</title><!-- 自定义样式表 --><link href"static/front/css/front.css" rel"stylesheet" /><!-- 新 Bootstrap5 核心 CSS 文件 --><link rel"stylesheet"…

Unity3D实现项目限制功能(使用次数限制和时间限制)

系列文章目录 unity工具 文章目录 系列文章目录前言一、时间限制1-1、代码如下&#xff1a; 二、次数限制2-1、 在Unity项目中需要对注册表进行操作&#xff0c;还需要设置一下API兼容级别设置成 .NET Framework2-2、设置如下图 Player里面2-3、代码如下&#xff1a; 三、同时…

前端超好玩的小游戏合集来啦--周末两天用html5做一个3D飞行兔子萝卜小游戏

文章目录 💖飞行兔子萝卜小游戏💟效果展示💟代码展示源码获取💖飞行兔子萝卜小游戏 💟效果展示 💟代码展示 <body> <script src=

Redis核心技术与实战【学习笔记】 - 14.Redis 旁路缓存的工作原理及如何选择应用系统的缓存类型

概述 我们知道&#xff0c;Redis 提供了高性能的数据存取功能&#xff0c;广泛应用在缓存场景中&#xff0c;既可以提升业务的响应速度&#xff0c;又可以避免把高并发的请求发送到数据库。 如果 Redis 做缓存时出现了问题&#xff0c;比如说缓存失效&#xff0c;那么&#x…

光隔离探头

一、前言。 光隔离探头的CMRR比高压差分探头要高很多,在一些共模电压较高的测量领域用的比较多,如:开关电源、逆变器等。但是市面上介绍光隔离探头的方案比较少,这里简要说明一下我的个人想法。 二、数字光和模拟光。 数字光就是通信上常用的光模块,传的是数字信号,带…

RabbitMQ-2.SpringAMQP

SpringAMQP 2.SpringAMQP2.1.创建Demo工程2.2.快速入门2.1.1.消息发送2.1.2.消息接收2.1.3.测试 2.3.WorkQueues模型2.2.1.消息发送2.2.2.消息接收2.2.3.测试2.2.4.能者多劳2.2.5.总结 2.4.交换机类型2.5.Fanout交换机2.5.1.声明队列和交换机2.5.2.消息发送2.5.3.消息接收2.5.4…

深刻理解树状数组--树状数组构造定义与动态维护区间和的合理性证明

文章目录 一.树状数组概览二.树状数组构造定义lowbit运算树状数组的结点值的定义树状数组结点层次的定义树状数组父子结点关系定义 三.关于树状数组结构的重要证明引理1引理2树状数组模板题 一.树状数组概览 树状数组的下标从1开始标识,其物理结构是线性表,逻辑结构是一颗多叉…

[学习笔记]刘知远团队大模型技术与交叉应用L6-基于大模型文本理解和生成介绍

介绍 NLP的下游运用可以分为&#xff1a;NLU(理解)和NLG(生成) 信息检索&#xff1a;NLU 文本生成&#xff1a;NLG 机器问答&#xff1a;NLUNLG 大模型在信息检索 大模型在机器问答 大模型在文本生成 信息检索-Information Retrieval (IR) 背景 谷歌搜索引擎目前同时集成了…

【兼容认证】白鲸开源与银河麒麟高级服务器操作系统成功通过测试

2024年1月2日&#xff0c;北京白鲸开源科技有限公司&#xff08;以下简称"白鲸开源"&#xff09;荣幸宣布&#xff0c;白鲸开源旗下产品 WhaleStudio V2.4 已成功通过与麒麟软件有限公司旗下的银河麒麟高级服务器操作系统产品的兼容性测试。 麒麟软件有限公司的银河麒…

蓝桥杯Web应用开发-浮动与定位

浮动与定位 浮动布局比较灵活&#xff0c;不易控制&#xff0c;而定位可以控制元素的过分灵活性&#xff0c;给元素一个具体的空间和精确的位置。 浮动 我们使用 float 属性指定元素沿其容器的左侧或右侧放置&#xff0c;浮动布局常见取值如下&#xff1a; • left&#xff0…

普通编程,机器学习与深度学习

普通编程&#xff1a;基于人手动设置规则&#xff0c;由输入产生输出经典机器学习&#xff1a;人手工指定需要的特征&#xff0c;通过一些数学原理对特征与输出的匹配模式进行学习&#xff0c;也就是更新相应的参数&#xff0c;从而使数学表达式能够更好的根据给定的特征得到准…

学习Android的第四天

目录 Android FrameLayout ( 帧布局 ) FrameLayout size 大小 FrameLayout 属性 Android GridLayout ( 网格布局 ) GridLayout 属性 计算器布局 Android AbsoluteLayout 绝对布局 AbsoluteLayout 四大控制属性 Android FrameLayout ( 帧布局 ) FrameLayout 是 Android…