消息中间件(消息队列)简介

c56092b593cd4ade9b2fb4b60d30a88c.jpg

 

MQ(message queue)消息队列,也叫消息中间件。消息队列已经逐渐成为企业IT系统内部通信的核心手段。它具有低耦合、可靠投递、广播、流量控制、最终一致性等一系列功能,成为异步RPC的主要手段之一。它是类似于数据库一样需要独立部署在服务器上的一种应用,提供接口给其他系统调用。

 

消息队列

 

1、消息Message

 

网络中两台计算机或者两个通讯设备之间传递的数据。例如说:文本、音乐、视频等内容。

 

2、队列Queue

 

一种特殊的线性表(数据元素首尾相接),特殊之处在于只允许在首部删除元素和在尾部追加元素(FIFO)。入队、出队。

 

3、消息队列MQ

 

消息+队列,保存消息的队列。消息的传输过程中的容器;主要提供生产、消息接口供外部屌用数据的存储和获取。

 

为什么要使用消息中间件

具体的说,中间件屏蔽了底层操作系统的复杂性,使程序开发人员面对一个简单而统一的开发环境,减少程序设计的复杂性,将注意力集中在自己的业务上,不必再为程序在不同系统软件上的移植而重复工作,从而大大减少了技术上的负担,中间件带给应用新系统的,不只是开发的简便,开发周期的缩短,也减少了系统的维护、运行和管理的工作量,还减少了计算机总体费用的投入。

 

1)系统解耦

 

假设你有个系统A,这个系统A会产出一个核心数据,现在下游有系统B和系统C需要这个数据。那简单,系统A就是直接调用系统B和系统C的接口发送数据给他们就好了。

 

整个过程,如下图所示:

 

 

 

 

 

但是现在要是来了系统D、系统E、系统F、系统G,等等,十来个其他系统慢慢的都需要这份核心数据呢?如下图所示:

 

 

 

 

 

大家可别以为这是开玩笑,一个大规模系统,往往会拆分为几十个甚至上百个子系统,每个子系统又对应N多个服务,这些系统与系统之间有着错综复杂的关系网络。如果某个系统产出一份核心数据,可能下游无数的其他系统都需要这份数据来实现各种业务逻辑。此时如果你要是采取上面那种模式来设计系统架构,那么绝对你负责系统A的同学要被烦死了。先是来一个人找他要求发送数据给一个新的系统H,系统A的同学要修改代码然后在那个代码里加入调用新系统H的流程。一会那个系统B是个陈旧老系统要下线了,告诉系统A的同学:别给我发送数据了,接着系统A再次修改代码不再给这个系统B。

 

然后如果要是某个下游系统突然宕机了呢?

 

系统A的调用代码里是不是会抛异常?那系统A的同学会收到报警说异常了,结果他还要去care是下游哪个系统宕机了。所以在实际的系统架构设计中,如果全部采取这种系统耦合的方式,在某些场景下绝对是不合适的,系统耦合度太严重。并且互相耦合起来并不是核心链路的调用,而是一些非核心的场景(比如上述的数据消费)导致了系统耦合,这样会严重的影响上下游系统的开发和维护效率。因此在上述系统架构中,就可以采用MQ中间件来实现系统解耦。系统A就把自己的一份核心数据发到MQ里,下游哪个系统感兴趣自己去消费即可,不需要了就取消数据的消费,如下图所示:

 

 

 

 2)异步调用

假设你有一个系统调用链路,是系统A调用系统B,一般耗时20ms;系统B调用系统C,一般耗时200ms;系统C调用系统D,一般耗时2s,如下图所示。

 

 

 

 

现在最大的问题就是:用户一个请求过来巨慢无比,因为走完一个链路,需要耗费:20ms + 200ms + 2000ms(2s) = 2220ms,也就是2秒多的时间。但是实际上,链路中的系统A调用系统B,系统B调用系统C,这两个步骤起来也就220ms。就因为引入了系统C调用系统D这个步骤,导致最终链路执行时间是2秒多,直接将链路调用性能降低了10倍,这就是导致链路执行过慢的罪魁祸首。

那此时我们可以思考一下,是不是可以将系统D从链路中抽离出去做成异步调用呢?其实很多的业务场景是可以允许异步调用的。举个例子:你平时点个外卖,咔嚓一下子下订单然后付款了,此时账户扣款、创建订单、通知商家给你准备菜品。接着,是不是需要找个骑手给你送餐?那这个找骑手的过程,是需要一套复杂算法来实现调度的,比较耗时。但是其实稍微晚个几十秒完成骑手的调度都是ok的,因为实际并不需要在你支付的一瞬间立马给你找好骑手,也没那个必要。那么我们是不是就可以把找骑手给你送餐的这个步骤从链路中抽离出去,做成异步化的,哪怕延迟个几十秒,但是只要在一定时间范围内给你找到一个骑手去送餐就可以了。这样是不是就可以让你下订单点外卖的速度变得超快?支付成功之后,直接创建好订单、账户扣款、通知商家立马给你准备做菜就ok了,这个过程可能就几百毫秒。然后后台异步化的耗费可能几十秒通过调度算法给你找到一个骑手去送餐,但是这个步骤不影响我们快速下订单。当然我们不是说那些大家熟悉的外卖平台的技术架构就一定是这么实现的,只不过是用一个生活中常见的例子给大家举例说明而已。所以上面的链路也是同理,如果业务流程支持异步化的话,是不是就可以考虑把系统C对系统D的调用抽离出去做成异步化的,不要放在链路中同步依次调用。这样,实现思路就是系统A -> 系统B -> 系统C,直接就耗费220ms后直接成功了。然后系统C就是发送个消息到MQ中间件里,由系统D消费到消息之后慢慢的异步来执行这个耗时2s的业务处理。通过这种方式直接将核心链路的执行性能提升了10倍。

 

 

3)流量削峰

 

假设你有一个系统,平时正常的时候每秒可能就几百个请求,系统部署在8核16G的机器的上,正常处理都是ok的,每秒几百请求是可以轻松抗住的。但是如下图所示,在高峰期一下子来了每秒钟几千请求,瞬时出现了流量高峰,此时你的选择是要搞10台机器,抗住每秒几千请求的瞬时高峰吗?

 

 

 

 

 

那如果瞬时高峰每天就那么半个小时,接着直接就降低为了每秒就几百请求,如果你线上部署了很多台机器,那么每台机器就处理每秒几十个请求就可以了,这不是有点浪费机器资源吗?大部分时候,每秒几百请求,一台机器就足够了,但是为了抗那每天瞬时的高峰,硬是部署了10台机器,每天就那半个小时有用,别的时候都是浪费资源的。

 

 

 

但是如果你就部署一台机器,那会导致瞬时高峰时,一下子压垮你的系统,因为绝对无法抗住每秒几千的请求高峰。此时我们就可以用MQ中间件来进行流量削峰。所有机器前面部署一层MQ,平时每秒几百请求大家都可以轻松接收消息。一旦到了瞬时高峰期,一下涌入每秒几千的请求,就可以积压在MQ里面,然后那一台机器慢慢的处理和消费。等高峰期过了,再消费一段时间,MQ里积压的数据就消费完毕了。

 

 

 

这个就是很典型的一个MQ的用法,用有限的机器资源承载高并发请求,如果业务场景允许异步削峰,高峰期积压一些请求在MQ里,然后高峰期过了,后台系统在一定时间内消费完毕不再积压的话,那就很适合用这种技术方案。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/455600.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何利用边缘计算网关进行机床数据采集,以提高数据采集的效率和准确性-天拓四方

边缘计算网关集成了数据采集、处理和传输功能的嵌入式设备。它位于传感器和执行器组成的设备层与云计算平台之间,能够实时处理和响应本地设备的数据请求,减轻云平台的压力,提高数据处理的速度和效率。同时,边缘计算网关还可以将处…

零售行业供应商数据分发,怎样提高安全性和效率?

零售行业是我国经济发展的重要组成,零售行业包罗万象,如包括汽车零售、日化零售、快消品零售等,不同细分行业的运营模式各不相同,但大体来说,零售行业都具备最基础的供应商和零售商,供应商将商品或服务卖给…

素数取りゲーム(线性筛、连续异或、博弈论

小结博弈论题型素数的特性连续异或 代码 题目:素数取りゲーム 临摹的题解:AT_ttpc2019d题解 这题真的看题解都断断续续看了两天才看懂这一个题解 : ( 小结 本题一下遇到了我好多没了解过的点,博弈论、素数的一些特性,连续异或的…

一,凸包------9,Graham Scan:正确性

正确性可以用数学归纳法 如果前K个点是当前最好的凸包的话,那么,当所有点遍历后,必然是最好的凸包。 当k 3时,是个三角形,成立。 如果当K>3时,比如由点1-9组成兔凸包后,判断10号点是否凸…

VR视频编辑解决方案,全新视频内容创作方式

随着科技的飞速发展,虚拟现实(VR)技术正逐渐成为各个领域的创新力量。而美摄科技,作为VR技术的引领者,特别推出了一套全新的VR视频编辑方案,为企业提供了一个全新的视频内容创作方式。 美摄科技的VR视频编…

UML之在Markdown中使用Mermaid绘制类图

1.UML概述 UML(Unified modeling language UML)统一建模语言,是一种用于软件系统分析和设计的语言工具,它用于帮助软件开发人员进行思考和记录思路。 类图是描述类与类之间的关系的,是UML图中最核心的。类图的是用于…

第二十四回 王婆计啜西门庆 淫妇药鸩武大郎-Numpy索引和切片操作示例

郓哥被王婆打了,就去找武大郎。将情况一说,两人商定去抓奸。一天武大郎只做了两三扇炊饼,约好了时间,郓哥进去顶住大门不让王婆关,武大郎直接跑进去,西门庆刚开始躲到床底下,后被潘金莲提醒&…

C++——stl,string容器详解

目录 1.string是什么 2.string的构造 代码示例: 3.string的赋值操作 代码示例: 4.string字符串拼接 ​编辑 代码示例: 5.string查找和替换 代码示例: 6.字符串比较 代码示例: 7.string字符存取 代码示例…

springboot与Elasticsearch版本兼容对比

首先 大家在下载 Elasticsearch 时 最好先弄清楚版本 因为 如果 Spring Boot 版本 不兼容 Elasticsearch 那就是到头一场空了 Elasticsearch 版本 6.x 可以兼容 Spring Boot 2.x Elasticsearch 版本 7.x 可以兼容 Spring Boot 2.x 3.x 4x Elasticsearch 版本 7.x 以及 8.x 可以…

车位检测,YOLOV8,OPENCV调用

车位检测YOLOV8NANO,opencv调用 车位检测,YOLOV8NANO,训练得到PT模型,然后转换成ONNX,OPENCV的DNN调用,支持C,PYTHON,ANDROID

CodeFuse-VLM 开源,支持多模态多任务预训练/微调

CodeFuse-MFT-VLM 项目地址:https://github.com/codefuse-ai/CodeFuse-MFT-VLM CodeFuse-VLM-14B 模型地址:CodeFuse-VLM-14B CodeFuse-VLM框架简介 随着huggingface开源社区的不断更新,会有更多的vision encoder 和 LLM 底座发布&#x…

记一次VulnStack渗透

信息收集 netdiscover的主机发现部分不再详解,通过访问端口得知20001-2003端口都为web端口,所以优先考虑从此方向下手 外网渗透 GetShell Struct漏洞 访问2001端口后,插件Wappalyzer爬取得知这是一个基于Struct的web站点,直接…