【计算机网络基础篇】学习笔记系列之一《TCP/IP 网络模型》

文章目录

    • 1、问题提出
    • 2,网络协议是分层的
    • 3,应用层
    • 4,传输层
    • 5,网络层
    • 6,网络接口层
    • 7,总结

1、问题提出

为什么要有 TCP/IP 网络模型?

不同设备上的进程间通信需要通过一套通用的网络协议进行网络通信。

对于同一台设备上的进程间通信,有很多种方式,比如有管道、消息队列、共享内存、信号等方式,而对于不同设备上的进程间通信,就需要网络通信,而设备是多样性的,所以要兼容多种多样的设备,就协商出了一套通用的网络协议。

2,网络协议是分层的

这个网络协议是分层的,每一层都有各自的作用和职责,接下来就根据「 TCP/IP 网络模型」分别对每一层进行介绍。

3,应用层

最上层的,也是我们能直接接触到的就是应用层(Application Layer),我们电脑或手机使用的应用软件都是在应用层实现。那么,当两个不同设备的应用需要通信的时候,应用就把应用数据传给下一层,也就是传输层。

所以,应用层只需要专注于为用户提供应用功能,比如 HTTP、FTP、Telnet、DNS、SMTP等。

应用层是不用去关心数据是如何传输的,就类似于,我们寄快递的时候,只需要把包裹交给快递员,由他负责运输快递,我们不需要关心快递是如何被运输的。

而且应用层是工作在操作系统中的用户态,传输层及以下则工作在内核态。

4,传输层

应用层的数据包会传给传输层,传输层(Transport Layer)是为应用层提供网络支持的。
在这里插入图片描述
在传输层会有两个传输协议,分别是 TCP 和 UDP。

TCP 的全称叫传输控制协议(Transmission Control Protocol),大部分应用使用的正是 TCP 传输层协议,比如 HTTP 应用层协议。TCP 相比 UDP 多了很多特性,比如流量控制、超时重传、拥塞控制等,这些都是为了保证数据包能可靠地传输给对方。

UDP 相对来说就很简单,简单到只负责发送数据包,不保证数据包是否能抵达对方,但它实时性相对更好,传输效率也高。当然,UDP 也可以实现可靠传输,把 TCP 的特性在应用层上实现就可以,不过要实现一个商用的可靠 UDP 传输协议,也不是一件简单的事情。

应用需要传输的数据可能会非常大,如果直接传输就不好控制,因此当传输层的数据包大小超过 MSS(TCP 最大报文段长度) ,就要将数据包分块,这样即使中途有一个分块丢失或损坏了,只需要重新发送这一个分块,而不用重新发送整个数据包。在 TCP 协议中,我们把每个分块称为一个 TCP 段(TCP Segment)。
在这里插入图片描述
当设备作为接收方时,传输层则要负责把数据包传给应用,但是一台设备上可能会有很多应用在接收或者传输数据,因此需要用一个编号将应用区分开来,这个编号就是端口。

比如 80 端口通常是 Web 服务器用的,22 端口通常是远程登录服务器用的。而对于浏览器(客户端)中的每个标签栏都是一个独立的进程,操作系统会为这些进程分配临时的端口号。

由于传输层的报文中会携带端口号,因此接收方可以识别出该报文是发送给哪个应用。

5,网络层

传输层可能大家刚接触的时候,会认为它负责将数据从一个设备传输到另一个设备,事实上它并不负责。

实际场景中的网络环节是错综复杂的,中间有各种各样的线路和分叉路口,如果一个设备的数据要传输给另一个设备,就需要在各种各样的路径和节点进行选择,而传输层的设计理念是简单、高效、专注,如果传输层还负责这一块功能就有点违背设计原则了。

也就是说,我们不希望传输层协议处理太多的事情,只需要服务好应用即可,让其作为应用间数据传输的媒介,帮助实现应用到应用的通信,而实际的传输功能就交给下一层,也就是网络层(Internet Layer)。
在这里插入图片描述
网络层最常使用的是 IP 协议(Internet Protocol),IP 协议会将传输层的报文作为数据部分,再加上 IP 包头组装成 IP 报文,如果 IP 报文大小超过 MTU(以太网中一般为 1500 字节)就会再次进行分片,得到一个即将发送到网络的 IP 报文。

在这里插入图片描述
网络层负责将数据从一个设备传输到另一个设备,世界上那么多设备,又该如何找到对方呢?因此,网络层需要有区分设备的编号。

我们一般用 IP 地址给设备进行编号,对于 IPv4 协议, IP 地址共 32 位,分成了四段(比如,192.168.100.1),每段是 8 位。只有一个单纯的 IP 地址虽然做到了区分设备,但是寻址起来就特别麻烦,全世界那么多台设备,难道一个一个去匹配?这显然不科学。

因此,需要将 IP 地址分成两种意义:

  • 一个是网络号,负责标识该 IP 地址是属于哪个「子网」的;
  • 一个是主机号,负责标识同一「子网」下的不同主机;
    怎么分的呢?这需要配合子网掩码才能算出 IP 地址 的网络号和主机号。

举个例子,比如 10.100.122.0/24,后面的/24表示就是 255.255.255.0 子网掩码,255.255.255.0 二进制是「11111111-11111111-11111111-00000000」,大家数数一共多少个1?不用数了,是 24 个1,为了简化子网掩码的表示,用/24代替255.255.255.0。

知道了子网掩码,该怎么计算出网络地址和主机地址呢?

将 10.100.122.2 和 255.255.255.0 进行按位与运算,就可以得到网络号,如下图:
在这里插入图片描述
将 255.255.255.0 取反后与IP地址进行进行按位与运算,就可以得到主机号。

大家可以去搜索下子网掩码计算器,自己改变下「掩码位」的数值,就能体会到子网掩码的作用了。

在这里插入图片描述
那么在寻址的过程中,先匹配到相同的网络号(表示要找到同一个子网),才会去找对应的主机。

除了寻址能力, IP 协议还有另一个重要的能力就是路由。实际场景中,两台设备并不是用一条网线连接起来的,而是通过很多网关、路由器、交换机等众多网络设备连接起来的,那么就会形成很多条网络的路径,因此当数据包到达一个网络节点,就需要通过路由算法决定下一步走哪条路径。

路由器寻址工作中,就是要找到目标地址的子网,找到后进而把数据包转发给对应的网络内。

在这里插入图片描述
所以,IP 协议的寻址作用是告诉我们去往下一个目的地该朝哪个方向走,路由则是根据「下一个目的地」选择路径。寻址更像在导航,路由更像在操作方向盘。

6,网络接口层

生成了 IP 头部之后,接下来要交给网络接口层(Link Layer)在 IP 头部的前面加上 MAC 头部,并封装成数据帧(Data frame)发送到网络上。
在这里插入图片描述
IP 头部中的接收方 IP 地址表示网络包的目的地,通过这个地址我们就可以判断要将包发到哪里,但在以太网的世界中,这个思路是行不通的。

什么是以太网呢?电脑上的以太网接口,Wi-Fi接口,以太网交换机、路由器上的千兆,万兆以太网口,还有网线,它们都是以太网的组成部分。以太网就是一种在「局域网」内,把附近的设备连接起来,使它们之间可以进行通讯的技术。

以太网在判断网络包目的地时和 IP 的方式不同,因此必须采用相匹配的方式才能在以太网中将包发往目的地,而 MAC 头部就是干这个用的,所以,在以太网进行通讯要用到 MAC 地址。

MAC 头部是以太网使用的头部,它包含了接收方和发送方的 MAC 地址等信息,我们可以通过 ARP 协议获取对方的 MAC 地址。

所以说,网络接口层主要为网络层提供「链路级别」传输的服务,负责在以太网、WiFi 这样的底层网络上发送原始数据包,工作在网卡这个层次,使用 MAC 地址来标识网络上的设备。

7,总结

综上所述,TCP/IP 网络通常是由上到下分成 4 层,分别是应用层,传输层,网络层和网络接口层。
在这里插入图片描述
再给大家贴一下每一层的封装格式:

在这里插入图片描述
网络接口层的传输单位是帧(frame),IP 层的传输单位是包(packet),TCP 层的传输单位是段(segment),HTTP 的传输单位则是消息或报文(message)。但这些名词并没有什么本质的区分,可以统称为数据包。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/456268.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

钢织网工厂革命:3D可视化技术重塑制造业未来

随着科技的飞速发展,传统的制造业正迎来一场前所未有的变革。 一、透视未来:可视化技术的魔力 想象一下,你能够站在一个全透明的工厂里,看着每一道工序、每一个机械臂、甚至是每一根钢丝是如何精准地编织成一张坚固的钢织网的。这…

2024年海外优青项目申报指南

国家自然科学基金优秀青年科学基金(海外)项目(简称“海外优青项目”),一直备受海外优秀青年学者(包括博士后研究人员)关注,被看作是回国发展最为重要的资助项目之一。知识人网小编现…

飞天使-k8s知识点12-kubernetes散装知识点1-架构有状态资源对象分类

文章目录 k8s架构图有状态和无状态服务 资源和对象对象规约和状态 资源的对象-资源的分类元数据型与集群型资源命名空间 k8s架构图 有状态和无状态服务 区分有状态和无状态服务有利于维护yaml文件 因为配置不同资源和对象 命令行yaml来定义对象对象规约和状态 规约 spec 描述…

【wu-lazy-cloud-network】Java自动化内网穿透

项目介绍 wu-lazy-cloud-network 是一款基于(wu-framework-parent)孵化出的项目,内部使用Lazy ORM操作数据库,主要功能是网络穿透,对于没有公网IP的服务进行公网IP映射 使用环境JDK17 Spring Boot 3.0.2 功能 1.内网…

06 MP之自动填充+SQL执行的语句和速度分析

1. 自动填充 在项目中有一些属性,比如常见的创建时间和更新时间可以设置为自动填充。 1.1 实例 需求: 将创建时间和更新时间设置为自动填充, 这样每次插入数据时可以不用理会这两个字段 1.1.1 在数据库增加字段 默认开启驼峰映射 createTime --> create_time…

unity实现第一人称和第三人称

在角色设置两个挂载点,第一人称时,相机放在eys上面,切换第三人称时,放置到3rd节点上面,调整节点位置,达到期望效果 代码 void ThirdView(){Debug.Log("切换到第三人称");camera.SetParent(third…

python-产品篇-游戏-玛丽冒险

文章目录 开发环境要求运行方法代码效果 开发环境要求 本系统的软件开发及运行环境具体如下。 (1)操作系统:Windows 7、Windows 8、Windows 10。 (2)Python版本:Python 3.7.0。 (3)…

C#,奥西里斯数(Osiris Number)的算法与源代码

1 奥西里斯数(Osiris Number) 奥西里斯数(Osiris Number)是一个数字&#xff0c; 其值等于通过将其自身数字的所有排列相加而形成的所有数字的值之和。 计算结果&#xff1a; 2 源程序 using System; namespace Legalsoft.Truffer.Algorithm { /// <summary> /…

商城小程序有搭建开发定制

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 前言 本文简单介绍 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考…

“极简壁纸“爬虫JS逆向·实战

文章目录 声明目标分析确定目标目标检索 代码补全完整代码 爬虫逻辑完整代码 运行结果 声明 本教程只用于交流学习&#xff0c;不可用于商业用途&#xff0c;不可对目标网站进行破坏性请求&#xff0c;请遵守相关法律法规。 目标分析 确定目标 获取图片下载链接 目标检索…

【多模态大模型】视觉大模型SAM:如何使模型能够处理任意图像的分割任务?

SAM&#xff1a;如何使模型能够处理任意图像的分割任务&#xff1f; 核心思想起始问题: 如何使模型能够处理任意图像的分割任务&#xff1f;5why分析5so分析 总结子问题1: 如何编码输入图像以适应分割任务&#xff1f;子问题2: 如何处理各种形式的分割提示&#xff1f;子问题3:…

创新方案|经济下行周期下企业避免杀价内卷侵蚀利润亟需5种创新定价策略

随着通胀持续、全球经济衰退逆风让消费者谨慎支出&#xff0c;绝大多数企业都担心如何刺激购买且保持利润率。在本研究认为&#xff0c;公司不应该简单地调整价格&#xff0c;而应该创造性地借鉴其他行业定价打法&#xff0c;通过创新定价选项的组合&#xff0c;增加向客户计价…