机器人工具箱学习(一)

一、机器人工具箱介绍

   机器人工具箱是由来自昆士兰科技大学的教授Peter Corke开发的,被广泛用于机器人进行仿真(主要是串联机器人)。该工具箱支持机器人一些基本算法的功能,例如三维坐标中的方向表示,运动学、动力学模型和轨迹生成。
   学习该工具箱较为经典的书籍有以下两本,其中第一本是Peter Corke教授自己编写的,为英文版,第二本是国内学者翻译的。
在这里插入图片描述

二、机器人工具箱的下载和安装

2.1 机器人工具箱下载

   可以在官方网站下载安装文件(点这个超链接即可跳转:机器人工具箱下载官网),如下所示:
在这里插入图片描述
   下载的文件名为 RTB10.4.mltbx,如下所示:
在这里插入图片描述

2.2 机器人工具箱安装

  在matlab中打开刚刚存放RTB10.4.mltbx文件的目录,然后双击RTB10.4.mltbx文件:
在这里插入图片描述
在这里插入图片描述
  下载完毕之后,输入指令:ver,便可以查看我们所下载的机器人工具箱版本,同时也进一步确认该工具箱是否安装成功
在这里插入图片描述
在这里插入图片描述

三、机器人学中的一些数学基础

3.1 三维空间中的位置和姿态

3.1.1 位置描述

  我个人简单的认为,所谓的位置描述就是点在某一个坐标系中的坐标。
在这里插入图片描述

上图中,空间中任意一点在坐标系 { A } \left\{ A \right\} {A}中的表示为:
在这里插入图片描述
其中, p x 、 p y 、 p z p _ { x }、p _ { y }、p _ { z } pxpypz分别表示该点在坐标系 { A } \left\{ A \right\} {A}中的三个坐标。MATLAB中,利用plot3( )函数可以绘制三维空间中的一个点。例如绘制空间中点(1,2,3):plot3(1,2,3,'*');
在这里插入图片描述

3.1.2 姿态描述

  我个人认为,所谓的姿态描述就是表示空间中某一个物体的方位。
在这里插入图片描述

如上图所示,空间中存在一个刚体,与该刚体固连的坐标系 { B } \left\{ B \right\} {B}。该刚体相对于坐标系 { A } \left\{ A \right\} {A}的姿态用姿态变换矩阵(也叫旋转矩阵) B A R _{B}^{A}\mathbf{\mathit{R}} BAR
在这里插入图片描述

式中, x A {\mathbf{\mathit{x}}}_{A} xA y A {\mathbf{\mathit{y}}}_{A} yA z A {\mathbf{\mathit{z}}}_{A} zA分别表示坐标系 { A } \left\{ A \right\} {A}三个坐标轴在某一个坐标系下的表示; x B {\mathbf{\mathit{x}}}_{B} xB y B {\mathbf{\mathit{y}}}_{B} yB z B {\mathbf{\mathit{z}}}_{B} zB分别表示坐标系 { B } \left\{ B \right\} {B}三个坐标轴在某一个坐标系下的表示; A x B ^ { A }x_{ B } AxB A y B ^ { A } y _ { B } AyB A z B ^ { A } z _ { B } AzB表示坐标系 { B } \left\{ B \right\} {B}三个坐标轴在坐标系 { A } \left\{ A \right\} {A}上的表达。
  当分别绕坐标轴 x 、 y 、 z x、y、z xyz旋转角度 θ \theta θ时,姿态变换矩阵 R R R可以分别表示为:
在这里插入图片描述

  机器人工具箱中提供rotx( )roty( )rotz( )函数来计算绕单个坐标轴旋转的姿态矩阵(注意:这些个函数默认角度制,但好像有的版本时默认弧度制度,注意辨别一下):
在这里插入图片描述

  使用trplot( )函数可以图形化显示相应的坐标系,例如显示一个绕基坐标系的 x x x轴旋转60°的坐标系,如下图所示:
在这里插入图片描述

  使用tranimate( )函数可以显示坐标系旋转的动画,如下图所示:
在这里插入图片描述

3.1.3 函数总结

(1)绕单个坐标轴旋转的旋转矩阵:rotx( )、roty( )、rotz( )函数
  ● rotx( ):R=rotx( θ \theta θ)表示围绕 x x x轴旋转角度 θ \theta θ所得到的旋转矩阵,函数返回一个3x3的矩阵;
  ● roty( ):R=roty( θ \theta θ)表示围绕 y y y轴旋转角度 θ \theta θ所得到的旋转矩阵,函数返回一个3x3的矩阵;
  ● rotz( ):R=rotz( θ \theta θ)表示围绕 z z z轴旋转角度 θ \theta θ所得到的旋转矩阵,函数返回一个3x3的矩阵;

(2)绘制坐标系:trplot( )函数
 trplot( )函数的语法:trplot(R, options)
  ● trplot®:绘制由旋转矩阵 R R R得到的坐标系;
  ● trplot(T):绘制由齐次变换矩阵 T T T表示的坐标系;
 trplot( )函数的options项有其他的用法
在这里插入图片描述

(3)动画展示函数:tranimate( )函数
  ● tranimate(x1, x2, options):展示3D坐标系从姿态x1变换到姿态x2的动画效果其中,姿态 x1和 x2有三种表示方法:一个4X4 的齐次矩阵,或一个3x3的旋转矩阵,或一个四元数;
  ● tranimate(x,options):展示了坐标系由上一个姿态变换到姿态x的动画效果。同样地,姿势x也有三种表示方法:一个4X4 的齐次矩阵,或一个 3x3 的旋转矩阵,或一个四元数;
  ● tranimate(xseq,options):展示了移动一段轨迹的动画效果。xseq可以是一组4x4xN的齐次矩阵,或一组 3x3xN 的旋转矩阵,或是一组四元数向量(Nx1)。
tranimate( )函数中options的其他用法:
在这里插入图片描述

3.2 坐标变换

  同一个物体可以在不同的坐标系下进行描述,这之间就涉及到坐标变换

3.2.1 平移坐标变换

在这里插入图片描述

如上图所示,坐标系 { A } \left\{ A \right\} {A}没有经过旋转,直接平移得到坐标系 { B } \left\{ B \right\} {B} P P P是坐标系 { B } \left\{ B \right\} {B}中的一点,用矢量 B P ^ { B } P BP表示它在坐标系 { B } \left\{ B \right\} {B}中的位置,用矢量 A P ^ { A } P AP表示它在坐标系 { A } \left\{ A \right\} {A}中的位置,则有:
在这里插入图片描述
式中, A P B O R G ^ { A } P _ { B O R G } APBORG是坐标系 { A } \left\{ A \right\} {A}平移的矢量。

  用4x4的齐次矩阵表示由坐标系 { A } \left\{ A \right\} {A}到坐标系 { B } \left\{ B \right\} {B}的平移变换矩阵:
在这里插入图片描述

其中, B x B_{x} Bx B y B_{y} By B z B_{z} Bz分别表示矢量 A P B O R G ^ { A } P _ { B O R G } APBORG的三个分量。
  机器人工具箱中用transl( )函数来计算平移变换矩阵,例如:坐标系 { A } \left\{ A \right\} {A}的坐标(这里的坐标指代位置和姿态)表示为:
在这里插入图片描述

坐标系 { A } \left\{ A \right\} {A}沿着 x x x轴移动10,沿着 y y y轴移动5,沿着 z z z轴移动1得到坐标系 { B } \left\{ B \right\} {B},可以用transl(10, 5, 1)来得到平移变换矩阵。
在这里插入图片描述

3.2.2 旋转坐标变换

在这里插入图片描述

  如上图所示,坐标系 { A } \left\{ A \right\} {A}没有经过平移,直接旋转(旋转矩阵为 B A R _{B}^{A}\mathbf{\mathit{R}} BAR)得到坐标系 { B } \left\{ B \right\} {B}。同一个点 P P P在坐标系 { A } \left\{ A \right\} {A}和坐标系 { B } \left\{ B \right\} {B}中的表达分别为 A P ^ { A } P AP B P ^ { B } P BP,两者的转换关系为:
在这里插入图片描述

  机器人工具箱中用trotx( )troty( )trotz( )函数分别表示绕 x x x轴、 y y y轴和 z z z轴旋转一定角度的4x4的齐次变换矩阵:
在这里插入图片描述

3.2.3 齐次坐标变换

在这里插入图片描述
  如上图所示,坐标系 { A } \left\{ A \right\} {A}经过平移(平移矢量为 A P B O R G ^ { A } P _ { B O R G } APBORG)和旋转(旋转矩阵为 B A R _{B}^{A}\mathbf{\mathit{R}} BAR)得到坐标系 { B } \left\{ B \right\} {B},则有:
在这里插入图片描述
将上式写成齐次坐标变换的形式:
在这里插入图片描述

  例如,坐标系 { A } \left\{ A \right\} {A}先绕 y y y轴旋转120°,然后再沿着 x x x轴移动4,沿着 y y y轴移动5,沿着 z z z轴移动6得到坐标系 { B } \left\{ B \right\} {B}
在这里插入图片描述

  坐标系 { B } \left\{ B \right\} {B}中的矢量 B P ^ { B} P BP在坐标系 { A } \left\{ A \right\} {A}中进行描述 A P ^ { A } P AP
在这里插入图片描述
在这里插入图片描述

  已知 A P ^ { A } P AP B P ^ { B } P BP
在这里插入图片描述
在这里插入图片描述
  在三维坐标中画出经过齐次变换的两个坐标系:
在这里插入图片描述

  transl( )函数可以获取齐次变换矩阵 T T T中的平移矢量,t2r( )函数可以获取齐次变换矩阵 T T T中的旋转矩阵,r2t( )函数可以根据旋转矩阵 R R R得到齐次变换矩阵 T T T(只有旋转,没有移动):
在这里插入图片描述

3.2.4 函数总结

(1)平移坐标变换:transl( )函数
  ● 使用transl( )函数创建齐次的平移变换矩阵
   1)T = transl(x,y,z):表示能够获取一个分别沿着x轴、y轴和z轴平移一段距离得到的4X4齐次变换矩阵;
   2)T= transl§:表示由经过矩阵(或向量) p = [ x , y , z ] p = \left[ x , y , z \right] p=[x,y,z]的平移得到的齐次变换矩阵如果 p p p为(Mx3)的矩 阵,则 T T T为一组齐次变换矩阵(4x4xM),其中 T ( : , : , i ) T ( : , : , i ) T(:,:,i)对应于 p p p的第 i i i行。
  ● 使用transl( )函数提取齐次矩阵 T T T中的平移变换分量。
(2)旋转坐标变换:trotx( )函数、troty( )函数和trotz( )函数
  ● T=trotx( θ \theta θ):表示围绕 x x x轴旋转 θ \theta θ角度得到的齐次变换矩阵(4x4);
  ● T=troty( θ \theta θ):表示围绕 y y y轴旋转 θ \theta θ角度得到的齐次变换矩阵(4x4);
  ● T=trotz( θ \theta θ):表示围绕 z z z轴旋转 θ \theta θ角度得到的齐次变换矩阵(4x4);
(3)t2r( )与r2t( )函数
  ● R=t2r(T):用来获取齐次变换矩阵 T T T中的旋转矩阵分量;
  ● T=r2t(R ):用来获取一个与旋转矩阵 R R R等价的具有零平移分量的齐次变换矩阵。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/458246.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CentOS7搭建Hadoop集群

准备工作 1、准备三台虚拟机,参考:CentOS7集群环境搭建(3台)-CSDN博客 2、配置虚拟机之间免密登录,参考:CentOS7集群配置免密登录-CSDN博客 3、虚拟机分别安装jdk,参考:CentOS7集…

Android14音频进阶:MediaPlayerService如何启动AudioTrack 下篇(五十六)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒体系统工程师系列【原创干货持续更新中……】🚀 人生格言: 人生从来没有捷径,只…

机器学习-线性回归法

线性回归算法 解决回归问题思想简单,实现容易许多强大的非线性模型的基础结果具有很好的可解释性蕴含机器学习中的很多重要思想 样本特征只有一个,称为:简单线性回归 通过分析问题,确定问题的损失函数或者效用函数 通过最优化…

Halcon机器视觉实战----提取水平方向缝隙区域

前言 如何从一块区域内找到水平方向的缝隙区域(不是高斯线条,从图像中提取,而是从区域内提取,考虑到了区域所在的方向); dev_close_window () dev_open_window (0, 0, 800, 800, black, WindowHandle) re…

从零开始手写mmo游戏从框架到爆炸(六)— 消息处理工厂

就好像门牌号一样,我们需要把消息路由到对应的楼栋和楼层,总不能像菜鸟一样让大家都来自己找数据吧。 首先这里我们参考了rabbitmq中的topic与tag模型,topic对应类,tag对应方法。 新增一个模块,专门记录路由eternity-…

[Tomcat问题]--使用Tomcat 10.x部署项目时,出现实例化Servlet类[xxx]异常

[Tomcat问题]–使用Tomcat 10.x部署项目时,出现实例化Servlet类[xxx]异常 本片博文在知乎同步更新 环境 OS: Windows 11 23H2Java Version: java 21.0.1 2023-10-17 LTSIDE: IntelliJ IDEA 2023.3.3Maven: Apache Maven 3.9.6Tomcat: Tomcat 10.1.18 ReleasedSer…

Netty源码 之 ByteBuf自适应扩缩容源码

Netty体系如何使得ByteBuf根据实际IO收发数据场景进行自适应扩容缩容的? IO收发数据的过程: read 读取("I"):网卡硬件通过网络传输介质读取对端传输过来的数据,网卡硬件再把数据写到recv-socke…

论文阅读——MP-Former

MP-Former: Mask-Piloted Transformer for Image Segmentation https://arxiv.org/abs/2303.07336 mask2former问题是:相邻层得到的掩码不连续,差别很大 denoising training非常有效地稳定训练时期之间的二分匹配。去噪训练的关键思想是将带噪声的GT坐标…

Golang 学习(一)基础知识

面向对象 Golang 也支持面向对象编程(OOP),但是和传统的面向对象编程有区别,并不是纯粹的面向对象语言。 Golang 没有类(class),Go 语言的结构体(struct)和其它编程语言的类(class)有同等的地位,Golang 是基于 struct 来实现 OOP…

由vscode自动升级导致的“终端可以ssh服务器,但是vscode无法连接服务器”

问题描述 简单来说就是,ssh配置没动,前两天还可以用vscode连接服务器,今天突然就连不上了,但是用本地终端ssh可以顺利连接。 连接情况 我的ssh配置如下: Host gpu3HostName aaaUser zwx现在直接在终端中进行ssh&am…

分布式事务组件Seata的TCC常见问题及解决方案

分布式事务组件Seata的TCC常见问题及解决方案 在 TCC 模型执行的过程中,还可能会出现各种异常,其中最为常见的有空回滚、幂等、悬挂等。TCC 模式是分布式事务中非常重要的事务模式,但是幂等、悬挂和空回滚一直是 TCC 模式需要考虑的问题&…

用云手机打造tiktok账号需要注意些什么?

随着tiktok平台的火热,越来越多的商家开始尝试更高效的tiktok运营方法。其中,tiktok云手机作为一种新科技引起了很多人的注意,那么用云手机运营tiktok需要注意些什么?下文将对此进行详细解析。 1. 不是所有的云手机都适合做tiktok…