实践动物姿态估计,基于最新YOLOv8全系列【n/s/m/l/x】参数模型开发构建公共场景下行人人员姿态估计分析识别系统

姿态估计(PoseEstimation)在我们前面的相关项目中涉及到的并不多,CV数据场景下主要还是以目标检测、图像识别和分割居多,最近正好项目中在使用YOLO系列最新的模型开发项目,就想着抽时间基于YOLOv8也开发构建实现姿态估计分析系统。在前面的博文实践中我们已经构建开发了基于人体的姿态估计分析系统,而关于动物的姿态估计则很少涉及,本文的主要思想就是想要基于最新的YOLOv8来开发构建动物姿态估计分析系统,这里我们选定以老虎为分析对象。

首先看下实例效果:

接下来简单看下我们构建的数据集:

实例标注数据如下所示:

0 0.5109375 0.4895833333333333 0.68125 0.6013888888888889 0.84765625 0.5055555555555555 0.79921875 0.3 0.64453125 0.2 0.2828125 0.25555555555555554 0.40703125 0.6611111111111111 0.47890625 0.7652777777777777 0.21875 0.7638888888888888 0.253125 0.4652777777777778 0.65390625 0.5388888888888889 0.62421875 0.7513888888888889 0.59453125 0.5555555555555556 0.73671875 0.7583333333333333

这里姿态估计的训练数据配置有别于目标检测,需要额外给出点位字段,下面给出来完整的训练数据配置文件内容:

# Dataset
path: ./dataset
train:- /animal-pose-yolov8/dataset/images/train
val:- /animal-pose-yolov8/dataset/images/test
test:- /animal-pose-yolov8/dataset/images/testkpt_shape: [12, 2] 
flip_idx: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]# Classes
names:0: tiger

为了对YOLOv8这一款模型性能进行全面对比分析,这里我们开发构建了包括:n、s、m、l和x在内的全系列参数模型,模型文件如下:

# Parameters
nc: 1  # number of classes
kpt_shape: [17, 3] 
scales: # model compound scaling constants, i.e. 'model=yolov8n-pose.yaml' will call yolov8-pose.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]s: [0.33, 0.50, 1024]m: [0.67, 0.75, 768]l: [1.00, 1.00, 512]x: [1.00, 1.25, 512]# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Pose, [nc, kpt_shape]]  # Pose(P3, P4, P5)

在实验阶段我们设定不同系列的参数模型完全相同的训练配置,等待全部训练完成后来看下结果详情对比情况。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

【mAP0.5】
mAP0.5(mean Average Precision at 0.5 IoU)
mAP0.5表示在IoU(交并比)阈值为0.5的情况下计算的平均精度(Average Precision,AP)。
IoU阈值决定了何时认为检测框与真实框匹配。较高的IoU阈值意味着更严格的匹配标准。
mAP0.5主要关注低阈值下的性能,即当IoU接近0.5时,模型在识别重叠框时的准确性。

【mAP0.5:0.95】
mAP0.5:0.95(mean Average Precision over IoU thresholds from 0.5 to 0.95):
mAP0.5:0.95表示在多个IoU阈值(从0.5到0.95)下计算的平均精度。
它涵盖了从低到高的IoU阈值,更全面地评估了模型在不同IoU阈值下的性能。
mAP0.5:0.95可以帮助我们了解模型在不同重叠程度下的检测能力。

【loss曲线】

从实验对比结果来看:几款不同参数量级的模型在40个epoch有比较明显的差距,到了50个epoch之后就达到了基本相近的水准了,这里最终考虑选择使用s系列的模型来作为线上推理模型。

接下来我们以s系列模型为例看下结果详情:

【Batch实例】

【训练可视化】

【PR曲线】

【离线推理实例效果如下】

感兴趣的话也都可以试试看!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv8s

全系列五个模型的训练结果总集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/459493.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】gdb调试与make/makefile工具

目录 导读 1. make/Makefile 1.1 引入 1.2 概念 1.3 语法规则 1.4 示例 2. Linux调试器-gdb 2.1 引入 2.2 概念 2.3 使用 导读 我们在上次讲了Linux编辑器gcc\g的使用,今天我们就来进一步的学习如何调试,以及makefile这个强大的工具。 1. mak…

STM32F1 - 工程模板_标准外设库

Project 1> 程序框架2> 文件结构3>标准外设库 - 头文件包含关系4> 移植中出现的错误4.1> 编译器版本选择4.2> 工程宏定义 N> 资料链接 1> 程序框架 根据硬件分层,把软件分层 2> 文件结构 为方便管理,将启动文件startup_stm…

零代码3D可视化快速开发平台

老子云平台 老子云3D可视化快速开发平台,集云压缩、云烘焙、云存储云展示于一体,使3D模型资源自动输出至移动端PC端、Web端,能在多设备、全平台进行展示和交互,是全球领先、自主可控的自动化3D云引擎。此技术已经在全球申请了专利…

Zoho Mail 2023:回顾过去,展望未来

当我们告别又一个非凡的一年时,我们想回顾一下Zoho Mail如何融合传统与创新。我们迎来了成立15周年,这是一个由客户、合作伙伴和我们的敬业团队共同庆祝的里程碑。与我们一起回顾这段旅程,探索定义Zoho Mail历史篇章的敏捷性、精确性和创新性…

分布式springboot 3项目集成mybatis官方生成器开发记录

文章目录 说明实现思路实现步骤第一步:创建generator子模块第二步:引入相关maven插件和依赖第三步:编写生成器配置文件第四步:运行查看结果 说明 该文章为作者开发学习记录,方便以后复习和交流主要内容为:…

图数据库 之 Neo4j - Browser 介绍(3)

Neo4j Browser 介绍 Neo4j Browser 中有 3 个模块,侧边栏,Cypher 编辑器与结果栏,在进入 Neo4j Browser 时结果栏会展示欢迎界面。 Cypher 编辑器 Cypher 是一种图形查询语言,用于查询和操作图形数据库。它是 Neo4j 图形数据库的…

提速MySQL:数据库性能加速策略全解析

提速MySQL:数据库性能加速策略全解析 引言理解MySQL性能指标监控和评估性能指标索引优化技巧索引优化实战案例 查询优化实战查询优化案例分析 存储引擎优化InnoDB vs MyISAM选择和优化存储引擎存储引擎优化实例 配置调整与系统优化配置调整系统优化优化实例 实战案例…

qt/c++实现表情选择框

💂 个人主页:pp不会算法^ v ^ 🤟 版权: 本文由【pp不会算法v】原创、在CSDN首发、需要转载请联系博主 💬 如果文章对你有帮助、欢迎关注、点赞、收藏(一键三连)和订阅专栏哦 实现功能 。编解码的设计 。映射关系设计 。匹配机制设计 演示效…

K8s环境下rook-v1.13.3部署Ceph-v18.2.1集群

文章目录 1.K8s环境搭建2.Ceph集群部署2.1 部署Rook Operator2.2 镜像准备2.3 配置节点角色2.4 部署operator2.5 部署Ceph集群2.6 强制删除命名空间2.7 验证集群 3.Ceph界面 1.K8s环境搭建 参考:CentOS7搭建k8s-v1.28.6集群详情,把K8s集群完成搭建&…

Avalonia学习(二十三)-大屏

弄一个大屏显示的界面例子&#xff0c;但是代码有点多&#xff0c;还有用户控件。 目前还有一点问题在解决&#xff0c;先看一下界面效果。 圆形控件 前端代码 <UserControl xmlns"https://github.com/avaloniaui"xmlns:x"http://schemas.microsoft.com/…

ThinkPHP 中使用Redis

环境.env [app] app_debug "1" app_trace ""[database] database "" hostname "127.0.0.1" hostport "" password "" prefix "ls_" username ""[redis] hostname "127.0.0.1…

PKI - 03 密钥管理(如何进行安全的公钥交换)

文章目录 Pre密钥管理面临的挑战安全密钥管理的几种方式手动密钥交换与确认受信任的介绍 Pre PKI - 02 对称与非对称密钥算法 密钥管理面临的挑战 密钥管理面临的挑战主要包括以下几点&#xff1a; 安全的公钥交换&#xff1a;在使用基于非对称密钥算法的服务之前&#xff0c…