Matplotlib绘制炫酷散点图:从二维到三维,再到散点图矩阵的完整指南与实战【第58篇—python:Matplotlib绘制炫酷散点图】

文章目录

  • Matplotlib绘制炫酷散点图:二维、三维和散点图矩阵的参数说明与实战
    • 引言
    • 二维散点图
    • 三维散点图
    • 散点图矩阵
    • 二维散点图进阶:辅助线、注释和子图
    • 三维散点图进阶:动画效果和交互性
    • 散点图矩阵进阶:调整样式和添加密度图
    • 总结与展望
    • 附录:Matplotlib常用散点图参数说明
      • 二维散点图参数说明
      • 三维散点图参数说明
      • 散点图矩阵参数说明
      • 通用参数说明

Matplotlib绘制炫酷散点图:二维、三维和散点图矩阵的参数说明与实战

引言

Matplotlib是Python中常用的数据可视化库之一,广泛应用于科学计算、数据分析和机器学习等领域。在本文中,我们将探讨Matplotlib如何绘制炫酷的散点图,包括二维散点图、三维散点图以及散点图矩阵。我们将深入了解每种散点图的参数说明,并通过实战代码演示它们的应用。

二维散点图

Matplotlib中的scatter函数可用于绘制二维散点图。以下是一些常用参数说明:

  • xy:指定散点图的x和y坐标。
  • s:指定散点的大小。
  • c:指定散点的颜色。
  • marker:指定散点的标记样式。
import matplotlib.pyplot as plt
import numpy as np# 生成随机数据
np.random.seed(42)
x = np.random.rand(50)
y = np.random.rand(50)
colors = np.random.rand(50)
sizes = 1000 * np.random.rand(50)# 绘制二维散点图
plt.scatter(x, y, s=sizes, c=colors, marker='o', alpha=0.7, cmap='viridis')
plt.title('二维散点图')
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.colorbar(label='颜色深浅')
plt.show()

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

三维散点图

如果想要绘制三维散点图,可以使用mplot3d模块。以下是一些关键参数:

  • xsyszs:指定散点的x、y和z坐标。
  • c:指定散点的颜色。
  • marker:指定散点的标记样式。
from mpl_toolkits import mplot3d# 生成随机数据
np.random.seed(42)
xs = np.random.rand(50)
ys = np.random.rand(50)
zs = np.random.rand(50)
colors = np.random.rand(50)
sizes = 100 * np.random.rand(50)# 绘制三维散点图
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(xs, ys, zs, s=sizes, c=colors, marker='o', alpha=0.7, cmap='viridis')
ax.set_title('三维散点图')
ax.set_xlabel('X轴')
ax.set_ylabel('Y轴')
ax.set_zlabel('Z轴')
plt.show()

image-20240204134507304

散点图矩阵

散点图矩阵是一种同时显示多个变量之间关系的图表,可通过scatter_matrix函数实现。以下是一些关键参数:

  • diagonal:指定对角线上绘制的图表类型。
  • marker:指定散点的标记样式。
  • c:指定散点的颜色。
from pandas.plotting import scatter_matrix
import pandas as pd# 生成随机数据
np.random.seed(42)
data = pd.DataFrame(np.random.rand(100, 4), columns=['A', 'B', 'C', 'D'])# 绘制散点图矩阵
scatter_matrix(data, alpha=0.8, figsize=(10, 10), marker='o', diagonal='kde', c='r')
plt.suptitle('散点图矩阵')
plt.show()

二维散点图进阶:辅助线、注释和子图

在绘制二维散点图时,我们可以进一步优化图表,增加辅助线、注释和子图,以提高可读性和信息传达。

import matplotlib.pyplot as plt
import numpy as np# 生成随机数据
np.random.seed(42)
x = np.random.rand(50)
y = np.random.rand(50)
colors = np.random.rand(50)
sizes = 1000 * np.random.rand(50)# 绘制二维散点图
fig, ax = plt.subplots()
sc = ax.scatter(x, y, s=sizes, c=colors, marker='o', alpha=0.7, cmap='viridis')# 添加辅助线和注释
ax.axhline(0.5, color='gray', linestyle='--', linewidth=1)
ax.axvline(0.5, color='gray', linestyle='--', linewidth=1)
ax.annotate('中心点', xy=(0.5, 0.5), xytext=(0.6, 0.7),arrowprops=dict(facecolor='black', shrink=0.05))# 设置标题和坐标轴标签
ax.set_title('二维散点图(进阶)')
ax.set_xlabel('X轴')
ax.set_ylabel('Y轴')# 添加颜色条
cbar = plt.colorbar(sc, label='颜色深浅')plt.show()

image-20240204134618271

三维散点图进阶:动画效果和交互性

对于三维散点图,我们可以通过添加动画效果和交互性来增强用户体验。

from mpl_toolkits import mplot3d
from matplotlib.animation import FuncAnimation# 生成随机数据
np.random.seed(42)
xs = np.random.rand(50)
ys = np.random.rand(50)
zs = np.random.rand(50)
colors = np.random.rand(50)
sizes = 100 * np.random.rand(50)# 绘制动态的三维散点图
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')def update(frame):ax.cla()ax.scatter(xs, ys, zs, s=sizes, c=colors, marker='o', alpha=0.7, cmap='viridis')ax.set_title(f'三维散点图 - 帧 {frame}')ax.set_xlabel('X轴')ax.set_ylabel('Y轴')ax.set_zlabel('Z轴')ani = FuncAnimation(fig, update, frames=range(50), interval=200)
plt.show()

散点图矩阵进阶:调整样式和添加密度图

在散点图矩阵中,我们可以调整样式,并添加密度图以更全面地呈现变量之间的关系。

from pandas.plotting import scatter_matrix
import pandas as pd# 生成随机数据
np.random.seed(42)
data = pd.DataFrame(np.random.rand(100, 4), columns=['A', 'B', 'C', 'D'])# 绘制散点图矩阵(进阶)
scatter_matrix(data, alpha=0.8, figsize=(10, 10), marker='o', diagonal='kde', c='r', grid=True)
plt.suptitle('散点图矩阵(进阶)')
plt.show()

通过以上实例,我们了解了如何进一步优化二维散点图、三维散点图和散点图矩阵,使其更具信息密度和视觉吸引力。这些技巧在实际应用中能够提高图表的可解释性和交互性。希望这篇文章对你在使用Matplotlib进行数据可视化时有所帮助。

总结与展望

在本文中,我们深入探讨了Matplotlib库中绘制不同种类炫酷散点图的参数说明与实战应用。从基础的二维散点图到三维散点图,再到散点图矩阵,我们逐步学习了如何利用Matplotlib强大的功能创建多样化的散点图。

在二维散点图中,我们学习了如何设置散点的大小、颜色、标记样式,以及如何添加辅助线和注释。这些技巧可以提高图表的可读性和信息传达效果。

在三维散点图中,我们引入了mplot3d模块,学习了如何绘制动态的三维散点图。动画效果和交互性的加入能够使数据更生动,更直观地展示变化趋势。

最后,我们探讨了散点图矩阵的应用,通过调整样式和添加密度图,使图表更具吸引力和信息密度。

未来,Matplotlib仍然是数据可视化领域的热门工具之一。随着Python生态系统的发展,我们可以期待更多关于数据可视化的新工具和技术的涌现。无论是在科学研究、数据分析还是机器学习领域,熟练使用数据可视化工具将成为数据科学家和工程师的重要技能之一。

希望本文的内容对你在使用Matplotlib进行数据可视化时提供了帮助,并激发了你进一步深入学习和实践的兴趣。祝愿你在数据可视化的旅程中取得更多的成就!

附录:Matplotlib常用散点图参数说明

在本附录中,我们将总结Matplotlib中常用于绘制散点图的重要参数说明,以供读者参考。

二维散点图参数说明

  • xy:指定散点图的x和y坐标。
  • s:指定散点的大小。
  • c:指定散点的颜色。
  • marker:指定散点的标记样式。
  • alpha:指定散点的透明度。
  • cmap:指定颜色映射。

三维散点图参数说明

  • xsyszs:指定散点的x、y和z坐标。
  • s:指定散点的大小。
  • c:指定散点的颜色。
  • marker:指定散点的标记样式。
  • alpha:指定散点的透明度。
  • cmap:指定颜色映射。

散点图矩阵参数说明

  • alpha:指定散点的透明度。
  • marker:指定散点的标记样式。
  • diagonal:指定对角线上绘制的图表类型。
  • c:指定散点的颜色。
  • grid:是否显示网格。

通用参数说明

  • title:图表的标题。
  • xlabelylabel:x和y轴的标签。
  • colorbar:添加颜色条。

以上参数说明仅为常用参数,Matplotlib提供了更多可供调整的参数,读者可根据具体需求查阅官方文档。

希望这份附录能够帮助读者更好地理解Matplotlib中散点图绘制函数的使用方法,进一步发挥数据可视化的强大功能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/460658.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Web】Spring rce CVE-2022-22965漏洞复现学习笔记

目录 原理概览 漏洞简述 Tomcat AccessLogValve 和 access_log 例题: 原理概览 spring框架在传参的时候会与对应实体类自动参数绑定,通过“.”还可以访问对应实体类的引用类型变量。使用getClass方法,通过反射机制最终获取tomcat的日志配置成员属性…

熔断机制解析:如何用Hystrix保障微服务的稳定性

微服务与系统的弹性设计 大家好,我是小黑,在讲Hystrix之前,咱们得先聊聊微服务架构。想象一下,你把一个大型应用拆成一堆小应用,每个都负责一部分功能,这就是微服务。这样做的好处是显而易见的,更新快,容错性强,每个服务可以独立部署,挺美的对吧?但是,问题也随之而…

Jedis与SpringBoot整合redis

一、Jedis 1、使用Java来操作Redis Jedis是Redis官方推荐使用的Java连接redis的客户端。 导入依赖 <!--导入jredis的包--> <dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId><version>3.2.0</ver…

爪哇部落算法组2024新生赛热身赛题解

第一题&#xff08;签到&#xff09;&#xff1a; 1、题意&#xff1a; 2、题解: 我们观察到happynewyear的长度是12个字符&#xff0c;我们直接从前往后遍历0到n - 12的位置&#xff08;这里索引从0开始&#xff09;&#xff0c;使用C的substr()函数找到以i开头的长度为12的字…

Redis中内存淘汰算法实现

Redis中内存淘汰算法实现 Redis的maxmemory支持的内存淘汰机制使得其成为一种有效的缓存方案&#xff0c;成为memcached的有效替代方案。 当内存达到maxmemory后&#xff0c;Redis会按照maxmemory-policy启动淘汰策略。 Redis 3.0中已有淘汰机制&#xff1a; noevictionall…

Kubernetes基础(十六)-pod QoS等级

1 Pod Qos等级 一个节点不一定能提供所有pod所指定的资源limits之和那么多的资源量。 假设有两个pod,pod A使用了节点内存的 90%,pod B突然需要比之前更多的内存&#xff0c;这时节点无法提供足量内存&#xff0c;哪个容器将被杀掉呢&#xff1f;应该是pod B吗&#xff1f;因…

Office2013下载安装教程,保姆级教程,附安装包和工具

前言 Microsoft Office是由Microsoft(微软)公司开发的一套基于 Windows 操作系统的办公软件套装。常用组件有 Word、Excel、PowerPoint、Access、Outlook等。 准备工作 1、Win7 及以上系统 2、提前准备好 Office 2013 安装包 安装步骤 1.鼠标右击【Office2013(64bit)】压缩…

掌握Vue,开启你的前端开发之路!

介绍&#xff1a;Vue.js是一个构建数据驱动的Web应用的渐进式框架&#xff0c;它以简洁和轻量级著称。 首先&#xff0c;Vue.js的核心在于其视图层&#xff0c;它允许开发者通过简单的模板语法将数据渲染进DOM&#xff08;文档对象模型&#xff09;。以下是Vue.js的几个重要特点…

爬虫工作量由小到大的思维转变---<第四十五章 Scrapyd 关于gerapy遇到问题>

前言: 本章主要是解决一些gerapy遇到的问题,会持续更新这篇! 正文: 问题1: 1400 - build.py - gerapy.server.core.build - 78 - build - error occurred (1, [E:\\项目文件名\\venv\\Scripts\\python.exe, setup.py, clean, -a, bdist_uberegg, -d, C:\\Users\\Administrat…

[linux]:匿名管道和命名管道(什么是管道,怎么创建管道(函数),匿名管道和命名管道的区别,代码例子)

目录 一、匿名管道 1.什么是管道&#xff1f;什么是匿名管道&#xff1f; 2.怎么创建匿名管道&#xff08;函数&#xff09; 3.匿名管道的4种情况 4.匿名管道有5种特性 5.怎么使用匿名管道&#xff1f;匿名管道有什么用&#xff1f;&#xff08;例子&#xff09; 二、命名…

《女神异闻录3 Reload》评价怎么样?Mac电脑怎么玩《女神异闻录3 Reload》?女神异闻录3销量超100万 女神异闻录3攻略

Atlus官方于今日宣布&#xff0c;《女神异闻录3&#xff1a;Reload》的销量已经突破了100万份&#xff0c;为Atlus史上销售速度最快的作品。现在超人气游戏《女神异闻录3&#xff1a;Reload》在苹果电脑上也能玩了。那么《女神异闻录3 Reload》评价怎么样&#xff1f;Mac电脑怎…

web前端------弹性盒子

display属性&#xff0c;用于指定元素的盒子类型。 属性值flex&#xff0c;表示生成一个弹性容器&#xff0c;简称容器。 容器中每一个子元素都叫做项目。 我们知道了弹性盒子由容器和项目组成。 而CSS中提供了很多属性来实现弹性布局&#xff0c;按照作用范围的不同&#…