ChatGPT高效提问—prompt常见用法(续篇四)

ChatGPT高效提问—prompt常见用法(续篇四)

1.1 知识生成

​ 知识生成是指使用自然语言处理技术,通过ChatGPT等AI模型生成与特定主题相关的知识、文本或回答。在知识生成过程中,模型接收prompt输入的问题、指令或上下文信息,并利用其内部的知识库、语言模型和推理能力,生成相应的回答或文本。生成的知识可以包括对事实的描述、解释、推断、观点或建议等。

​ 知识生成的过程通常依赖两个重要部分:模型的预训练和生成算法。

  • 预训练:自然语言处理模型通常会在大规模文本语料库上进行预训练,以学习语言的结构、语义和常见的模式。预训练使模型具备了广泛的语言知识,并能够理解和生成自然语言文本。
  • 生成算法:生成算法是模型用于知识生成的具体技术。这些算法可以 基于不同的架构,如递归神经网络、Transformer模型等。生成算法利用模型等内部表示和概率分布,通过采样或搜索等方式生成与给定输入相关的文本。这些算法还可以通过调整配置参数,提高生成结果的质量和多样性。

​ 在生成知识时,模型会尝试根据上下文和prompt指令来理解问题的意图,并利用其通过预训练获得的知识生成相应的回答或文本。这些生成的知识可以包括对事实的描述、解释和背景知识、逻辑推断、观点和建议等。生成的知识既可以是针对特定领域或主题的,也可以是通用的语言知识。

​ 然而,生成的知识并非总是准确和完美的。模型可能会受到训练数据所含偏见、语义歧义、上下文理解不足等问题的影响,导致生成的知识存在错误、不完整或模糊。因此,在使用知识生成技术时,需要对结果进行评估、验证和筛选,以确保其准确性和可靠性。

1.1.1 知识问答

​ 知识问答就是回答用户提出的知识性问题。prompt公式为“请回答以下问题:[插入问题]“。

​ 输入prompt:

Screenshot 2024-02-08 at 08.31.36

​ ChatGPT输出:

Screenshot 2024-02-08 at 08.34.23

​ ChatGPT回答了我们的问题,提供了关于太阳系的知识。

1.1.2 知识整合

​ 知识整合是指使用ChatGPT整合输入信息并生成新的知识。prompt公式为“将以下信息与[主题]的现有知识整合:[插入新信息]“。

​ 输入prompt:

Screenshot 2024-02-08 at 08.39.26

​ ChatGPT输出:

Screenshot 2024-02-08 at 08.41.28

1.1.3 数据分析

​ ChatGPT可用于分析现有数据并生成新的知识。prompt公式为“请根据这些数据生成有关[主题]的信息“。

​ 输入prompt:

Screenshot 2024-02-08 at 08.46.27

​ ChatGPT输出:

Screenshot 2024-02-08 at 08.50.45

​ ChatGPT成功分析了数据分布区域和背后的商业价值,并给出销售建议,可以为企业制定销售战略提供参考。

1.1.4 连接片段信息

​ ChatGPT可用于连接不同的片段信息,形成整体的知识信息。prompt公式为“以相关且逻辑清晰的方式连接以下片段信息:[片段信息1][片段信息2]…“

​ 输入prompt:

Screenshot 2024-02-08 at 09.00.00

​ ChatGPT输出:

Screenshot 2024-02-08 at 09.03.01

​ ChatGPT成功连接了两个片段信息,并输出连贯完整的信息。

1.1.5 更新现有知识

​ 使用新信息更新现有知识的prompt公式为“使用以下信息更新[主题]的现有知识:[插入新信息]“。

​ 输入prompt:

Screenshot 2024-02-08 at 09.07.50

​ ChatGPT输出:

Screenshot 2024-02-08 at 09.10.32

​ ChatGPT成功使用输入信息更新了当前量子计算方面的知识并输出。

​ 通过以上介绍,相信你一定会惊叹于ChatGPT强大的知识生成能力,但是如何充分发挥大模型的能力呢?这就离不开接下来要讲的种子词。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/461064.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ubuntu22.04@laptop OpenCV Get Started: 005_rotate_and_translate_image

ubuntu22.04laptop OpenCV Get Started: 005_rotate_and_translate_image 1. 源由2. translate/rotate应用Demo3 translate_image3.1 C应用Demo3.2 Python应用Demo3.3 平移图像过程 4. rotate_image4.1 C应用Demo4.2 Python应用Demo4.3 旋转图像过程 5. 总结6. 参考资料 1. 源由…

数字IC实践项目(9)— Tang Nano 20K: I2C OLED Driver

Tang Nano 20K: I2C OLED Driver 写在前面的话硬件模块RTL电路和相关资源报告SSD1306 OLED 驱动芯片SSD1306 I2C协议接口OLED 驱动模块RTL综合实现 总结 写在前面的话 之前在逛淘宝的时候偶然发现了Tang Nano 20K,十分感慨国产FPGA替代方案的进步之快;被…

【漏洞复现】多语言药房管理系统MPMS文件上传漏洞

Nx01 产品简介 多语言药房管理系统 (MPMS) 是用 PHP 和 MySQL 开发的, 该软件的主要目的是在药房和客户之间提供一套接口,客户是该软件的主要用户。该软件有助于为药房业务创建一个综合数据库,并根据到期、产品等各种参数提供各种报告。 Nx02 漏洞描述 …

一条 SQL 更新语句是如何执行的?

之前你可能经常听 DBA 同事说,MySQL 可以恢复到半个月内任意一秒的状态,惊叹的同时,你是不是心中也会不免会好奇,这是怎样做到的呢? 我们先从一条更新语句讲起,首先创建一个表,这个表有一个主键…

ubuntu22.04安装部署03: 设置root密码

一、前言 ubuntu22.04 安装完成以后,默认root用户是没有设置密码的,需要手动设置。具体的设置过程如下文内容所示: 相关文件: 《ubuntu22.04装部署01:禁用内核更新》 《ubuntu22.04装部署02:禁用显卡更…

MySQL数据库⑥_内置函数(日期函数+字符串函数+数学函数等)

目录 1. 日期函数 2. 字符串函数 3. 数学函数 4. 其它函数 本篇完。 1. 日期函数 MySQL常用的日期函数如下: 函数名称描述current_date()获取当前日期current_time()获取当前时间current_timestamp()获取当前时间戳now()获取当前日期时间date(datetime)获取d…

了解海外云手机的多种功能

随着社会的高度发展,海外云手机成为商家不可或缺的工具,为企业出海提供了便利的解决方案。然而,谈及海外云手机,很多人仍不了解其强大功能。究竟海外云手机有哪些功能,可以为我们做些什么呢? 由于国内电商竞…

Qlik Sense : Lookup函数

LookUp - 脚本函数 Lookup() 用于查找已经加载的表格,并返回与在字段 match_field_name 中第一次出现的值 match_field_value 对应的 field_name 值。表格可以是当前表格或之前加载的其他表格。 语法: lookup(field_name, match_field_name, match_…

OpenCV-33 开运算和闭运算

目录 一、开运算 二、闭运算 三、形态学梯度 开运算和闭运算都是腐蚀和膨胀的基本应用。 一、开运算 开运算 腐蚀膨胀(腐蚀之后再膨胀) 开运算提供了另一种去除噪声的思路。(腐蚀先进行去噪,膨胀再还原图像) 通过API --- morphologyE…

Vue + Element UI el-table + sortablejs 行、列拖拽排序

实现Element UI中的el-table表格组件的行和列的拖拽排序 使用 Vue3 Element Plus UI sortablejs 安装sortablejs pnpm install sortablejs行拖拽 基本实现 效果 <script setup> import { onMounted, ref } from "vue"; import Sortable from "sort…

Elasticsearch(四)

是这样的前面的几篇笔记&#xff0c;感觉对我没有形成知识体系&#xff0c;感觉乱糟糟的&#xff0c;只是大概的了解了一些基础知识&#xff0c;仅此而已&#xff0c;而且对于这技术栈的学习也是为了在后面的java开发使用&#xff0c;但是这里的API学的感觉有点乱&#xff01;然…

排序算法---堆排序

原创不易&#xff0c;转载请注明出处。欢迎点赞收藏~ 堆排序&#xff08;Heap Sort&#xff09;是一种基于二叉堆数据结构的排序算法。它将待排序的元素构建成一个最大堆&#xff08;或最小堆&#xff09;&#xff0c;然后逐步将堆顶元素与堆的最后一个元素交换位置&#xff0c…