P3647 题解

文章目录

  • P3647 题解
    • Overview
    • Description
    • Solution
      • Lemma
        • Proof
      • Main
    • Code

P3647 题解

Overview

很好的题,但是难度较大。

模拟小数据!——【数据删除】

Description

给定一颗树,有边权,已知这棵树是由这两个操作得到的:

  • Append(u, w):在 u u u w w w 之间连一条红边,注意这里的 w w w 必须是新点
  • Insert(u, v, w):在 u u u w w w v v v w w w 之间各连一条蓝边,注意这里的 w w w 必须是新点

问蓝线的长度最大能到多少。

Solution

我们可以尝试将所有的 Insert 所产生的蓝边对都提取出来。
它们只可能有两种形式:son - u - fatherson1 - u - son2

Lemma

引理:所有的蓝边都可以在某一个根上表现出形如 son - u - father 的形式。

Proof

当树上没有形如 son1 - u - son2 的蓝边时,显然成立;

当树上恰好有一个形如 son1 - u - son2 的蓝边时,可以将 son1son2 其中之一作为根,解决问题;

当树上有大于一个形如 son1 - u - son2 的蓝边时,可以证明不存在这样的边。
如图,当存在形如 1 的情况时,son1son2 构成了单独的连通块,因为如果不是,那么 son1son2 一定会是父子关系,矛盾;
当存在多个这样的连通块时,如图 2,建树时节点一定会组成单一的连通块,因为 u u u 总是存在,所以不成立。
only one component can exist

Main

有了引理,就可以树形 dp 了。

枚举树根,对每个根 DP。设 d u , 0 / 1 d_{u,0/1} du,0/1 u u u 为根, u u u 是否为蓝边终点的子树最大边权和。

先看 d u , 0 d_{u,0} du,0,因为没有边上的限制,所以可以任意取,对于是中点的情况,可以再加上边权 w ( u , v ) w(u,v) w(u,v),即 max ⁡ ( d v , 1 + w ( u , v ) , d v , 0 ) \max(d_{v,1}+w(u,v), d_{v,0}) max(dv,1+w(u,v),dv,0)
再看 d u , 1 d_{u,1} du,1,一定有一个 d v , 0 + w ( u , v ) d_{v,0}+w(u,v) dv,0+w(u,v),其它都是 max ⁡ ( d v , 1 + w ( u , v ) , d v , 0 ) \max(d_{v,1}+w(u,v), d_{v,0}) max(dv,1+w(u,v),dv,0),所以要加上 max ⁡ Δ sum \max \Delta_{\text{sum}} maxΔsum

所以关于 d d d 的状态转移方程可以这样写:

d u , 0 = ∑ v ∈ son ( u ) max ⁡ ( d v , 1 + w ( u , v ) , d v , 0 ) d u , 1 = d u , 0 + max ⁡ v ∈ son ( u ) { d v , 0 + w ( u , v ) − max ⁡ ( d v , 1 + w ( u , v ) , d v , 0 ) } d_{u,0} = \sum_{v\in \text{son}(u)}\max(d_{v,1}+w(u,v),d_{v,0})\\d_{u,1} = d_{u,0}+\max_{v\in \text{son}(u)}\{d_{v,0} + w(u,v) - \max(d_{v,1} + w(u,v), d_{v,0})\} du,0=vson(u)max(dv,1+w(u,v),dv,0)du,1=du,0+vson(u)max{dv,0+w(u,v)max(dv,1+w(u,v),dv,0)}

这样,就可以枚举根得到 O ( n 2 ) O(n^2) O(n2) 的复杂度, 15 pts 15\text{pts} 15pts

接下来考虑换根 DP。

一张图解释接下来两个 DP 数组的含义。

g is the ans k is the curr_up
这里的 g g g 并不描述这个子树,而是以 u u u 为根的整棵树

根据 f f f 的转移方程,我们照样也可以推出 g g g k k k 的转移方程,留给读者思考。

注意到方程里仍有大量之前可以利用的内容,所以需要维护最大值和次大值。

Code

#include <bits/stdc++.h>using namespace std;int dp[200001][2], dp1[200001][2], dp2[200001][2], mx[200001], mx2[200001];vector<pair<int, int> > gv[200001];inline void add_edge(int u, int v, int w){gv[u].push_back(make_pair(v, w));gv[v].push_back(make_pair(u, w));
}void dfs(int u, int fa){vector<int> vec;vec.push_back(INT_MIN), vec.push_back(INT_MIN);for(auto v : gv[u]){if(v.first == fa) continue;dfs(v.first, u);dp[u][0] += max(dp[v.first][0], dp[v.first][1] + v.second);vec.push_back(dp[v.first][0] + v.second - max(dp[v.first][0], dp[v.first][1] + v.second));}sort(vec.begin(), vec.end(), greater<int>());mx[u] = vec[0], mx2[u] = vec[1];dp[u][1] = dp[u][0] + mx[u];
}void dfs1(int u, int fa, int lst){for(auto v : gv[u]){if(v.first == fa) continue;int tmp = dp[v.first][0] + v.second - max(dp[v.first][0], dp[v.first][1] + v.second);dp2[u][0] = dp1[u][0] - max(dp[v.first][0], dp[v.first][1] + v.second);dp2[u][1] = dp2[u][0] + (mx[u] == tmp ? mx2[u] : mx[u]);if(fa + 1) dp2[u][1] = max(dp2[u][1], dp2[u][0] + dp2[fa][0] + lst - max(dp2[fa][0], dp2[fa][1] + lst));dp1[v.first][0] = dp[v.first][0] + max(dp2[u][0], dp2[u][1] + v.second);
//		dp1[v.first][1] = dp1[v.first][0] + max(mx[v.first], dp2[u][0] + v.second - max(dp2[u][0], dp2[u][1] + v.second));dfs1(v.first, u, v.second);}
}void init_vars(){// type your initiating code...
}void solve(int testcase, ...){init_vars();int n; cin >> n;for(int i = 0; i < n - 1; i++){int u, v, w; cin >> u >> v >> w;add_edge(u, v, w);}dfs(1, -1); dp1[1][0] = dp[1][0];dfs1(1, -1, 0);int ans = 0;for(int i = 1; i <= n; i++){//cout << mx[i] << " " << mx2[i] << endl;ans = max(ans, dp1[i][0]);}cout << ans << endl;
}signed main(){
#ifdef filesfreopen(".in", "r", stdin);freopen(".out", "w", stdout);
#endifios::sync_with_stdio(0);cin.tie(0), cout.tie(0);solve(1);
#ifdef filesfclose(stdin); fclose(stdout);
#endifreturn 0;
}/**  things to check*  1.  int overflow or long long memory need*  2.  recursion/array/binary search/dp/loop bounds*  3.  precision*  4.  special cases(n=1,bounds)*  5.  delete debug statements*  6.  initialize(especially multi-tests)*  7.  = or == , n or m ,++ or -- , i or j , > or >= , < or <=*  8.  keep it simple and stupid*  9.  do not delete, use // instead*  10. operator priority*  11. is there anything extra to output?*  12. THINK TWICE CODE ONCE, THINK ONCE DEBUG FOREVER*  13. submit ONCE, AC once. submit twice, WA forever*  14. calm down and you'll get good rank*  15. even a bit wrong scores zero*  16. ...**//**  something to think about*  1. greedy? dp? searching? dp with matrix/ segment tree? binary search? ...?*  2. If it is difficult, why not the opposite?**//*##########   ############   #####         #########                 #####      ####       ####
####                 #####        ####     ####
####             ##########        ####   ####
####               #####              #####
####              #####               #########            #####                ################  #############         #####
*/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/461568.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Rust 格式化输出

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、format! 宏二、fmt::Debug三、fmt::Display四、? 操作符 循环打印 前言 Rust学习系列-本文根据教程学习Rust的格式化输出&#xff0c;包括fmt::Debug&…

Web Services 服务 是不是过时了?创建 Web Services 服务实例

Web Services 是不是过时了&#xff1f; 今天是兔年最后一天&#xff0c;先给大家拜个早年 。 昨天上午视频面试一家公司需要开发Web Services 服务&#xff0c;这个也没有什么&#xff0c;但还需要用 VB.net 开发。这个是多古老的语言了&#xff0c;让我想起来了 10年 前 写 …

【RT-DETR改进涨点】更加聚焦的边界框损失Focaler-IoU、InnerFocalerIoU(二次创新)

一、本文介绍 本文给大家带来的改进机制是更加聚焦的边界框损失Focaler-IoU已经我进行二次创新的InnerFocalerIoU同时本文的内容支持现阶段的百分之九十以上的IoU,比如Focaler-IoU、Focaler-ShapeIoU、Inner-Focaler-ShapeIoU包含非常全的损失函数,边界框的损失函数只看这一…

vue3+vite+ts 配置commit强制码提交规范配置 commitlint

配置 git 提交时的 commit 信息&#xff0c;统一提交 git 提交规范 安装命令: npm install -g commitizen npm i cz-customizable npm i commitlint/config-conventional commitlint/cli -D 文件配置 根路径创建文件 commitlint.config.js module.exports {// 继承的规…

江科大STM32 终

目录 SPI协议10.1 SPI简介W25Q64简介10.3 SPI软件读写W25Q6410.4 SPI硬件外设读写W25Q64 BKP备份寄存器、PER电源控制器、RTC实时时钟11.0 Unix时间戳代码示例&#xff1a;读写备份寄存器BKP11.2 RTC实时时钟 十二、PWR电源控制12.1 PWR简介代码示例&#xff1a;修改主频12.3 串…

位运算 二进制中1的个数

求n的第k位数字: n >> k & 1 返回n的最后一位1&#xff1a;lowbit(n) n & -n 二进制中1的个数 C代码实现: #include<iostream> using namespace std; const int N1000002; int lowbit(int x){return x&-x; } int a[N]; int main(){int n;cin>>…

【Linux】进程学习(二):进程状态

目录 1.进程状态1.1 阻塞1.2 挂起 2. 进程状态2.1 运行状态-R进一步理解运行状态 2.2 睡眠状态-S2.3 休眠状态-D2.4 暂停状态-T2.5 僵尸状态-Z僵尸进程的危害 2.6 死亡状态-X2.7 孤儿进程 1.进程状态 1.1 阻塞 阻塞&#xff1a;进程因为等待某种条件就绪&#xff0c;而导致的…

Spring Boot + 七牛OSS: 简化云存储集成

引言 Spring Boot 是一个非常流行的、快速搭建应用的框架&#xff0c;它无需大量的配置即可运行起来&#xff0c;而七牛云OSS提供了稳定高效的云端对象存储服务。利用两者的优势&#xff0c;可以为应用提供强大的文件存储功能。 为什么选择七牛云OSS? 七牛云OSS提供了高速的…

电商小程序05用户注册

目录 1 搭建页面2 设置默认跳转总结 我们上一篇拆解了登录功能&#xff0c;如果用户没有账号就需要注册了。本篇我们介绍一下注册功能的实现。 1 搭建页面 打开应用&#xff0c;点击左上角的新建页面 输入页面的名称&#xff0c;用户注册 删掉网格布局&#xff0c;添加表单容…

maven-install-plugin:2.4:install (default-cli) on project ability-dispatch:

IDEA&#xff0c;instal时报错 &#xff0c;错误 信息如下&#xff1a; Failed to execute goal org.apache.maven.plugins:maven-install-plugin:2.4:install (default-cli) on project ability-dispatch: The packaging for this project did not assign a file to the buil…

Unity3d Shader篇(六)— BlinnPhong高光反射着色器

文章目录 前言一、BlinnPhong高光反射着色器是什么&#xff1f;1. BlinnPhong高光反射着色器的工作原理2. BlinnPhong高光反射着色器的优缺点优点缺点 3. 公式 二、使用步骤1. Shader 属性定义2. SubShader 设置3. 渲染 Pass4. 定义结构体和顶点着色器函数5. 片元着色器函数 三…

K8S之标签的介绍和使用

标签 标签定义标签实操1、对Node节点打标签2、对Pod资源打标签查看资源标签删除资源标签 标签定义 标签就是一对 key/value &#xff0c;被关联到对象上。 标签的使用让我们能够表示出对象的特点&#xff0c;比如使用在Pod上&#xff0c;能一眼看出这个Pod是干什么的。也可以用…