机器学习10-特征缩放

特征缩放的目的是确保不同特征的数值范围相近,使得模型在训练过程中更加稳定,加速模型收敛,提高模型性能。具体而言,零均值单位方差的目标有以下几点好处:

1. 均值为零(Zero Mean):通过减去特征的均值,可以使特征分布的中心位于零点。这样做有助于消除不同特征之间的偏差,确保模型不会在某些特征上过度拟合。如果某个特征的均值远离零,模型可能会更关注那些数值较大的特征。

2. 单位方差(Unit Variance):通过除以特征的标准差,可以将特征的尺度统一为相似的范围。这是因为不同特征可能具有不同的数值范围,如果某个特征的值较大,它可能会在模型中占据主导地位,而忽略其他特征。通过保持单位方差,确保了所有特征对模型的贡献相对均衡。

总的来说,零均值和单位方差的特征更容易被模型理解和处理,有助于提高模型的性能和泛化能力。特征缩放通常对那些使用距离度量或梯度下降等优化算法的模型尤为重要,如支持向量机、k最近邻、神经网络等。

单位方差指的是数据的方差被标准化为 1。
在特征缩放中,我们通常使用 StandardScaler 来实现单位方差。StandardScaler 通过减去均值并除以标准差的方式,将数据的分布调整为均值为 0,标准差为 1。

下面是一个简单的例子,演示如何使用 StandardScaler 实现单位方差:

import numpy as np
from sklearn.preprocessing import StandardScaler# 创建一组示例数据
data = np.array([[1, 2, 3],[4, 5, 6],[7, 8, 9]])# 初始化 StandardScaler
scaler = StandardScaler()# 计算均值和标准差,并进行缩放
scaled_data = scaler.fit_transform(data)# 输出缩放后的数据
print("原始数据:")
print(data)
print("\n缩放后的数据(单位方差):")
print(scaled_data)

结果:

缩放后的数据(单位方差):

[[-1.22474487 -1.22474487 -1.22474487]

[ 0. 0. 0. ]

[ 1.22474487 1.22474487 1.22474487]]

解释:

在这个例子中,我们创建了一个 3x3 的矩阵作为示例数据。然后,使用 StandardScaler 对数据进行缩放。输出中的缩放后数据的每个特征都具有零均值和单位方差。这是通过 fit_transform 方法完成的,该方法计算数据的均值和标准差,并将数据进行相应的缩放。

在实际应用中,特征缩放是机器学习中的一项常见预处理步骤,有助于确保不同特征之间的尺度不同不会影响模型的性能。

这段程序使用了`StandardScaler`类进行数据的标准化,标准化是一种特征缩放的方法。下面是这段程序的数学运算步骤

1. 计算均值(Mean):

对每个特征,计算其在所有样本上的平均值。对于示例数据,每一列的均值分别是

(1 + 4 + 7) / 3, (2 + 5 + 8) / 3, (3 + 6 + 9) / 3

2. 计算标准差(Standard Deviation):

对每个特征,计算其在所有样本上的标准差。标准差是每个数据点与均值的偏差的平方的平均值的平方根。对于示例数据,可以计算每列的标准差。

3. 进行缩放操作:

使用标准化公式进行缩放。对于每个特征,将其减去均值,然后除以标准差。这样可以确保每个特征的均值为0,标准差为1。

对于示例数据,缩放后的值可以通过以下公式计算:

x_{\text{scaled}} = \frac{x - \text{mean}}{\text{std}}

其中, x 是原始数据中的每个数据点, mean 是均值, std 是标准差。

结论:

这样,经过标准化处理后,每个特征的均值为0,标准差为1,即实现了单位方差

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/461776.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

University Program VWF仿真步骤__全加器

本教程将以全加器为例,选择DE2-115开发板的Cyclone IV EP4CE115F29C7 FPGA,使用Quartus Lite v18.1,循序渐进的介绍如何创建Quartus工程,并使用Quartus Prime软件的University Program VWF工具创建波形文件,对全加器的…

Linux——进程池(管道)

经过了管道的介绍之后,我们可以实现了进程间通信,现在我就来简单介 绍一下管道的应用场景——进程池。1. 引入 在我们的编码过程中,不乏会听到,内存池,进程池,空间配置器等等名词,这些是用来干…

PV、UV、IP

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言1. PV1.1 PV 计算1.2 PV 的影响因素 2. UV2.1 UV 计算2.2UV 的影响因素 3. IP3.1 IP和UV①UV大于IP②UV小于IP 三者的关系PV 和 UV 前言 PV、UV、IP是我们在运…

【汇编】简单的linux汇编语言程序

一、Linux系统汇编语言 Linux系统上的汇编语言可以使用不同的语法风格,主要包括Intel语法和AT&T语法。这两种语法有各自的特点和风格区别,尽管它们表示的底层机器指令相同。下面分别对两种语法进行简要说明: Intel语法 Intel语法是由I…

RedissonClient妙用-分布式布隆过滤器

目录 布隆过滤器介绍 布隆过滤器的落地应用场景 高并发处理 多个过滤器平滑切换 分析总结 布隆过滤器介绍 布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是…

GPT-4模型中的token和Tokenization概念介绍

Token从字面意思上看是游戏代币,用在深度学习中的自然语言处理领域中时,代表着输入文字序列的“代币化”。那么海量语料中的文字序列,就可以转化为海量的代币,用来训练我们的模型。这样我们就能够理解“用于GPT-4训练的token数量大…

《Git 简易速速上手小册》第6章:Git 在持续集成/持续部署(CI/CD)中的应用(2024 最新版)

文章目录 6.1 CI/CD基础6.1.1 基础知识讲解6.1.2 重点案例:为 Python Web 应用实现 CI/CD6.1.3 拓展案例 1:自动化部署到云平台6.1.4 拓展案例 2:使用 Docker 容器化部署 6.2 Git 与自动化测试6.2.1 基础知识讲解6.2.2 重点案例:为…

C++类和对象(7)

目录 3. 友元 3.1 友元函数 3.2 友元类 4. 内部类 5.匿名对象 6.拷贝对象时的一些编译器优化 7. 再次理解类和对象 3. 友元 友元提供了一种突破封装的方式,有时提供了便利。但是友元会增加耦合度,破坏了封装,所以 友元不宜多用。 友元…

Python数据分析 可视化数据Seaborn图表 这篇就够了

目录 1.Seaborn图表概述 2.安装Seaborn图表 3.Seaborn图表的基本设置 3.1设置图表的背景风格 3.2 设置图表的边框 4.常见图表的绘制 41 .柱形图的绘制 4.2 折线图的绘制 4.3 散点图的绘制 1.Seaborn图表概述 Seaborn是一个基于Matplotlib的Python数据可视化库&#xff…

树与二叉树---数据结构

树作为一种逻辑结构,同时也是一种分层结构,具有以下两个特点: 1)树的根结点没有前驱,除根结点外的所有结点有 且只有一个前驱。 2)树中所有结点可以有零个或多个后继。 树结点数据结构 满二叉树和完全二…

元素的显示与隐藏

目录 1.元素的显示与隐藏 1.1 display属性 1.2 visibility 可见性 1.3 overflow 溢出 1.元素的显示与隐藏 1.1 display属性 1.2 visibility 可见性 1.3 overflow 溢出

kmeans聚类选择最优K值python实现

Kmeans算法中K值的确定是很重要的。 下面利用python中sklearn模块进行数据聚类的K值选择 数据集自制数据集,格式如下: 维度为3。 ①手肘法 手肘法的核心指标是SSE(sum of the squared errors,误差平方和), 其中,Ci是第…