ElasticSearch之倒排索引

写在前面

本文看下es的倒排索引相关内容。

1:正排索引和倒排索引

正排索引就是通过文档id找文档内容,而倒排索引就是通过文档内容找文档id,如下图:
在这里插入图片描述

2:倒排索引原理

假定我们有如下的数据:
在这里插入图片描述
为了建立倒排索引,我们需要先对文档进行分词,如下:
在这里插入图片描述
分词后每一个词有一个专门的名词来表示,叫做Term,term就是我们要搜索的目标,但是找到了term并不能找到文档,为了找到文档,每一个term对应一个[<文档id,偏移量,出现次数>]的数组,这个数组我们叫做Posting List,其中每个term对应一个Posing List,如下图:
在这里插入图片描述
为了方便查找term,term+Posing List组合在字典的数据结构,叫做Term Dictionary(注意term是排好序的,所以可以顺序查找,后面会用到!!!),如下图:
在这里插入图片描述
这样,当我们搜索Elasticsearch,可以通过Term Disctionary,查到对应的term,然后通过term就可以找到对应的PosingList,就找到文档了,这个过程如下:
在这里插入图片描述
但,实际上我们搜索的关键词,是没有办法直接按照上述流程找到term的,因为term dictionary比较大,是保存在磁盘上的,直接基于磁盘查找,速度就可想而知了,所以,es还设计了另外一种数据结果term index,用来在内存中保存关键词对应的term磁盘页位置,term index是一种基于trie tree的数据结构,大概如下图:
在这里插入图片描述
其中红色的就是位置信息,但是注意在term index中只会存储前缀,所以可以定位到一个大概的位置,而因为term是顺序存储的,所以可以顺序读盘,找到目标term,这里我们简单的以直接定位到term为例看下这个过程:
在这里插入图片描述
最后,es为了能够将term index存储在内存中,还是用了FST的算法,来压缩空间。则最终查找过程就如下图了:
在这里插入图片描述

以上过程分词是及其重要的一个环节,所以我们接下来也来看下分词相关的内容。

3:分词

3.1:什么是分词和分词器

分词:analysis,即将一句话分为多个词(term)的过程。

分词器:analyzer,完成分词这个操作的工具。

如下图:

在这里插入图片描述

所以,分词是个动词,分词器是个名词。

分词器在我们写入数据构建倒排索引的时候会用到,在输入一句话进行搜索的时候也会用到。

3.2:分词器的工作原理

一个标准的分词器由以下三部分组成:

Charancter Filters:对原始的内容进行处理,如删除html字符,等
Tokenizer:按照某种规则切分为一组单词(term),这部分功能不仅每种分词器都有,而且还可能包含Token Filters的功能(可以看作是分词器的非标准实现)
Token Filters:对切分后的次进行处理,如转小写,删除停用词等

如下简单例子:
在这里插入图片描述

注意这只是一个标准的分词器需要具备的三个部分,但除了Tokennizer必须提供具体的实现外,Chracter Filters和Token Filters并不是必须提供实现的。

3.3:分词器都有哪些

在这里插入图片描述
为了方便你我们查看不同的分词效果,es提供了_analysis 的rest api,如下:
在这里插入图片描述

3.3.1:Standard Analyzer

默认分词器,标准分词器三部分提供如下:

charanter Filters:无
Tokennizer:按词切分,就是按照空格切分吧
Token Filters:小写处理

如下图:
在这里插入图片描述
首先,我们来看下standard analyzer的执行效果:
在这里插入图片描述
可以看到只是空格划分后转小写了。
如果我们想要启动token fitlers中的停用词该怎么办呢?可以这样,我们来自定义一个分词器,并指定配置,因为在es中自定义分词需要定义在索引下,所以我们需要指定索引来创建(其实就是设置索引的setting),如下:

PUT standard_analyzer_token_length_conf1_index
{"settings": {"analysis": {"analyzer": {"english_1analyzer":{"type":"standard","max_token_length":5,"stopwords":"_english_"}}}}
}

在这里插入图片描述
在索引standard_analyzer_token_length_conf1_index中我们定义了一个名称为english_1analyzer的自定义索引,其中的配置项如下:

"type":"standard",基于standard分词器
"max_token_length":5,token最大长度为5,即如果term长度大于5则回分为2个,如ABCDEFGHI,会分为ABCDE和FGHI
"stopwords":"_english_"使用标准的eglish停用词语,也可以通过stopwords_path来指定停用词

测试如下:
在这里插入图片描述
可以看到is a这些就没了,并且每个term的最大长度是5,超过5的也被分成了多个。

3.3.2:Simple Analyzer

简单分词器,标准分词器三部分提供如下:

Charanter filters:不提供实现
Tokennizer:按照非字母进行切分(可对比standard分词器只按照空格进行切分),然后还抢了本该属于Token Filters的活,会转小写
Token filters:不提供实现

在这里插入图片描述
测试如下:
在这里插入图片描述

3.3.3:White space Analyzer

空格分词器,标准分词器三部分提供如下:

Character Filters:不提供实现
Tokenizer:按照空格切分(简单粗暴)
Token Filters:不提供实现

v
测试如下:
在这里插入图片描述

3.3.4:stop anylizer

停用词分词器,标准分词器三部分提供如下:

Character Filters:不提供实现
Tokenizer:按照空格切分
Token Filters:删除is,a等修饰词

可以看到相比于simple analyzer,只是多了tokenfilters的删除修饰词功能。
在这里插入图片描述
测试如下:
在这里插入图片描述

3.3.5:keyword anylizer

关键词分词器,标准分词器三部分提供如下:

Charater Fitlers:不提供实现
Tokennizer:原样输出,也是一种特殊的分割,不是嘛!!!
Token Filters:不提供实现

在这里插入图片描述
测试如下:
在这里插入图片描述

3.3.6:Pattern anylizer

模式分词器,标准分词器三部分提供如下:

Character Fiters:不提供实现
Tokennizer:默认按照\W+进行分割,即按照[0-9a-zA-Z_]之外的字符进行分割
Token Fiters:转小写,以及停用词

在这里插入图片描述
测试如下:
在这里插入图片描述

3.3.7:language anylizer

这并不是一个分词器,而是一组分词器,一组针对特定语言的分词器,支持语言如下:
在这里插入图片描述
以english为例看下,其token filters还会将一些特定语态的单词变为正常的,如xxxIng变为xxx,如:
在这里插入图片描述

3.3.8:中文分词

因为中华文字,博大精深,变化多端,所以分词的难度相当之大,具体点如下:
在这里插入图片描述
为了测试中文分词我们可以来自定义一个安装了ik插件的新镜像,参考docker自定义镜像并使用 。只需要将docker-compose中的es imga改成我们自己定义的就可以测试了,如:
在这里插入图片描述

3.3.9:自定义分词器

https://blog.csdn.net/weixin_28906733/article/details/106610972 如果希望自定义一个与standard类似的analyzer,只需要在原定义

  • 自定义一个与standard类似的analyzer
    先再来看下standard分词器:
charanter Filters:无
Tokennizer:按词切分,就是按照空格切分吧
Token Filters:小写处理

定义和使用:

//测试自定义analyzer
PUT custom_rebuild_standard_analyzer_index
{"settings": {"analysis": {"analyzer": {"rebuild_analyzer":{"type":"custom","tokenizer":"standard","filter":["lowercase"]}}}}
}//测试请求参数
POST custom_rebuild_standard_analyzer_index/_analyze
{"text": "transimission control protocol is a transport layer protocol"
}
  • 自定义一个与simple类似的analyzer
    先再来看下simple分词器:
Charanter filters:不提供实现
Tokennizer:按照非字母进行切分(可对比standard分词器只按照空格进行切分),然后还抢了本该属于Token Filters的活,会转小写
Token filters:不提供实现

测试和使用:

//测试自定义analyzer
PUT custom_rebuild_simple_analyzer_index
{"settings": {"analysis": {"analyzer": {"rebuild_simple":{"tokenizer":"lowercase","filter":[]}}}}
}//测试请求参数
POST custom_rebuild_simple_analyzer_index/_analyze
{"text": "transimission control protocol is a transport layer protocol"
}

写在后面

参考文章列表

Elasticsearch 学习笔记

Elasticsearch是如何做到快速索引的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/463005.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

阿里云游戏服务器一年费用多少?

阿里云游戏服务器租用价格表&#xff1a;4核16G服务器26元1个月、146元半年&#xff0c;游戏专业服务器8核32G配置90元一个月、271元3个月&#xff0c;阿里云服务器网aliyunfuwuqi.com分享阿里云游戏专用服务器详细配置和精准报价&#xff1a; 阿里云游戏服务器租用价格表 阿…

Android SystemConfig相关

SystemConfig在哪里初始化 它声明在PackageManagerService类的静态方法main()中。在该方法中间定义Injector类对象时&#xff0c;作为它的构造参数。它是调用的SystemConfig.getInstance()实现初始化&#xff0c;之后能通过Injector类对象的getSystemConfig()得到SystemConfig类…

探索未来:集成存储器计算(IMC)与深度神经网络(DNN)的机遇与挑战

开篇部分&#xff1a;人工智能、深度神经网络与内存计算的交汇 在当今数字化时代&#xff0c;人工智能&#xff08;AI&#xff09;已经成为科技领域的一股强大力量&#xff0c;而深度神经网络&#xff08;DNN&#xff09;则是AI的核心引擎之一。DNN是一种模仿人类神经系统运作…

【Spring】springmvc如何处理接受http请求

目录 ​编辑 1. 背景 2. web项目和非web项目 3. 环境准备 4. 分析链路 5. 总结 1. 背景 今天开了一篇文章“SpringMVC是如何将不同的Request路由到不同Controller中的&#xff1f;”&#xff1b;看完之后突然想到&#xff0c;在请求走到mvc 之前服务是怎么知道有请求进来…

【数据分享】1901~2022中国1km逐月潜在蒸散发数据集

大家新年好啊&#xff01;今天给大伙儿分享的是1901~2022中国1km逐月潜在蒸散发数据集&#xff0c;收藏一下&#xff0c;过完年再看&#xff01;当然了&#xff0c;如果有问题的朋友&#xff0c;可以添加俺微信交流。 1 数据简介 数据集为中国逐月潜在蒸散发&#xff0c;空间分…

机器学习系列——(二十二)结语

随着我们的机器学习系列的探索画上句号&#xff0c;我们不禁感慨于这一领域的广阔和深邃。从最初的基础概念到复杂的算法&#xff0c;从理论的探讨到实际应用的示例&#xff0c;我们一起经历了一段非凡的旅程。机器学习不仅是当前技术创新的核心驱动力之一&#xff0c;也是塑造…

第6章 智能租房——前期准备

学习目标 了解智能租房项目&#xff0c;能够说出项目中各模块包含的功能 熟悉智能租房项目的开发模式与运行机制&#xff0c;能够复述项目的开发模式与运行机制 掌握智能租房项目的创建&#xff0c;能够独立创建智能租房项目 掌握智能租房项目的配置&#xff0c;能够为智能租…

Leecode之环形链表进阶

一.题目及剖析 https://leetcode.cn/problems/linked-list-cycle-ii/description/ 这道题就是找到链表中环的入口 二.思路引入 假设起点到环的入口的距离为L, 环的长度为C, 入口到相遇点的距离为C - N 设定一个快慢指针,速度分别为2, 1 则有 (L kC - N) 2*(L C - N) 即…

python 爬虫篇(3)---->Beautiful Soup 网页解析库的使用(包含实例代码)

Beautiful Soup 网页解析库的使用 文章目录 Beautiful Soup 网页解析库的使用前言一、安装Beautiful Soup 和 lxml二、Beautiful Soup基本使用方法标签选择器1 .string --获取文本内容2 .name --获取标签本身名称3 .attrs[] --通过属性拿属性的值标准选择器find_all( name , at…

深入解析Linux中HTTP代理的工作原理

亲爱的Linux探险家们&#xff0c;准备好一起探索HTTP代理背后的神秘面纱了吗&#xff1f;在这个数字世界里&#xff0c;HTTP代理就像是一个神秘的中间人&#xff0c;默默地在你和互联网之间穿梭&#xff0c;为你传递信息。那么&#xff0c;这个神秘的中间人到底是如何工作的呢&…

SpringBoot源码解读与原理分析(二十)IOC容器的刷新(一)

文章目录 7 IOC容器的刷新7.1 初始化前的预处理7.1.1 初始化属性配置7.1.2 初始化早期事件的集合 7.2 初始化BeanFactory7.2.1 注解驱动的refreshBeanFactory7.2.2 XML驱动的refreshBeanFactory7.2.3 获取BeanFactory 7.3 BeanFactory的预处理配置7.3.1 ApplicationContextAwar…

sqli.labs靶场(54-65关)

54、第五十四关 提示尝试是十次后数据库就重置&#xff0c;那我们尝试union 原来是单引号闭合 id-1 union select 1,database(),(select group_concat(table_name) from information_schema.tables where table_schemadatabase()) -- 数据库&#xff1a;challenges&#xff0c…