Flink从入门到实践(二):Flink DataStream API

文章目录

  • 系列文章索引
  • 三、DataStream API
    • 1、官网
    • 2、获取执行环境(Environment)
    • 3、数据接入(Source)
      • (1)总览
      • (2)代码实例(1.18版本已过时的)
      • (3)使用Source接口
    • 4、数据处理(Transformation)
      • (1)总览
      • (2)Map(后续用该结果测试)
      • (3)Filter
      • (4)FlatMap
      • (5)KeyBy
      • (6)Reduce
      • (7)Union
      • (8)Connect
      • (9)CoMap, CoFlatMap
      • (10)Physical Partitioning 分区
      • (11)Side Outputs 分流操作
    • 5、数据输出(Data Sinks、Connectors)
      • (1)总览
      • (2)print
      • (3)自定义Sink打印到控制台
      • (4)写入到文件
      • (5)输出到MySQL
      • (6)输出到Redis
      • (7)输出到Socket
      • (8)输出到Kafka

系列文章索引

Flink从入门到实践(一):Flink入门、Flink部署
Flink从入门到实践(二):Flink DataStream API
Flink从入门到实践(三):数据实时采集 - Flink MySQL CDC

三、DataStream API

1、官网

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/overview/

2、获取执行环境(Environment)

/*** 1、获取Flink执行的环境* getExecutionEnvironment() 这是我们用的最多的一种* createLocalEnvironment()  这种仅限于本地开发使用* createRemoteEnvironment(String host, int port, String... jarFiles);  知道就行,开发不用*** getExecutionEnvironment 传入一个 new Configuration(),本质上是一个HashMap*/
// StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(new Configuration());
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.enableCheckpointing(3000); // 3秒检查一次,提高应用程序的容错性和数据一致性。
DataStream<String> text = env.readTextFile("file:///path/to/file");

通常来说使用getExecutionEnvironment()就可以了,会自动选择你当前的运行环境。

3、数据接入(Source)

(1)总览

我们可以使用env.addSource(sourceFunction)来添加数据来源,实际有许多内置的Source,也可以定义自己的Source。

如果想要自定义数据来源,比如说(该方式在1.18已过时,推荐使用Source接口):
实现SourceFunction接口来实现单并行度的数据来源;
实现ParallelSourceFunction接口来实现多并行度的数据来源;
实现RichParallelSourceFunction接口来实现更高级的多并行度的数据来源。

内置的数据来源(本质上也是使用env.addSource(sourceFunction)来已经预实现了):
env.readTextFile(path):逐行读取文本文件,即符合TextInputFormat规范的文件,并将其作为字符串返回。
readFile(fileInputFormat, path):按照指定的文件输入格式读取(一次)文件。
readFile(fileInputFormat, path, watchType, interval, pathFilter, typeInfo):更加复杂的文件处理。
socketTextStream():从Socket读取。元素可以用分隔符分隔。
fromCollection(Collection)fromCollection(Iterator, Class)fromElements(T ...)fromParallelCollection(SplittableIterator, Class)generateSequence(from, to):从集合读取。
addSource(new FlinkKafkaConsumer<>(...)):从kafka读取。

在这里插入图片描述

(2)代码实例(1.18版本已过时的)

// 实体类
public class Access {private long time;private String domain;private double traffic;
}public class Student {private int id;private String name;private int age;
}
// 工具类 需要引入mysql-connector-java包
import java.sql.Connection;
import java.sql.DriverManager;public class MySQLUtils {public static Connection getConnection() throws Exception {Class.forName("com.mysql.jdbc.Driver");return DriverManager.getConnection("jdbc:mysql://localhost:3306/flink", "root", "123");}public static void close(AutoCloseable closeable) {if(null != closeable) {try {closeable.close(); // null.close} catch (Exception e) {e.printStackTrace();} finally {closeable = null;}}}
}
// 自定义source
/*** 自定义数据源* 并行度为1*/
public class AccessSource implements SourceFunction<Access>{volatile boolean isRunning = true;/*** 造数据是自定义数据源的使用方式之一* @param ctx* @throws Exception*/@Overridepublic void run(SourceContext<Access> ctx) throws Exception {Random random = new Random();String[] domains = {"test1.com","test2.com","test3.com"};while (isRunning) {long time = System.currentTimeMillis();ctx.collect(new Access(time, domains[random.nextInt(domains.length)], random.nextInt(1000) + 1000));Thread.sleep(2000);}}@Overridepublic void cancel() {isRunning = false;}
}/*** 自定义数据源* 多并行度*/
public class AccessSourceV2 implements ParallelSourceFunction<Access> {volatile boolean isRunning = true;/*** 造数据是自定义数据源的使用方式之一* @param ctx* @throws Exception*/@Overridepublic void run(SourceContext<Access> ctx) throws Exception {Random random = new Random();String[] domains = {"test1.com","test2.com","test3.com"};while (isRunning) {long time = System.currentTimeMillis();ctx.collect(new Access(time, domains[random.nextInt(domains.length)], random.nextInt(1000) + 1000));Thread.sleep(5000);}}@Overridepublic void cancel() {isRunning = false;}
}/*** RichSourceFunction: Rich  +   SourceFunction* Rich: 包含了生命周期方法  open  close* SourceFunction:单** 自定义二次开发:按照框架(Flink/Spark/....)所提供的接口,去实现自己的业务逻辑即可* 自定义Source* 自定义Sink*** 扩展:对于Spark SQL的外部数据源熟悉吗? 按照Spark所提供的接口,自己实现业务逻辑**/
public class MySQLSource extends RichSourceFunction<Student> {Connection connection;PreparedStatement pstmt;/*** 初始化操作,建立connection*/@Overridepublic void open(Configuration parameters) throws Exception {connection = MySQLUtils.getConnection();pstmt = connection.prepareStatement("select * from student");}/*** 释放资源,关闭connection*/@Overridepublic void close() throws Exception {MySQLUtils.close(pstmt);MySQLUtils.close(connection);}/*** 业务逻辑:就是把表中的数据读取出来 ==> Student*/@Overridepublic void run(SourceContext<Student> ctx) throws Exception {ResultSet rs = pstmt.executeQuery();while (rs.next()) {int id = rs.getInt("id");String name = rs.getString("name");int age = rs.getInt("age");Student student = new Student(id, name, age);ctx.collect(student);}}@Overridepublic void cancel() {}
}
/*** Flink中datasource的使用*/
public class FlinkDataSourceApp {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();/*** 使用内置的dataSource*/
//        DataStreamSource<String> source = env.readFile(new TextInputFormat(null), "data/wc.data");
//        // 这个readTextFile方法底层其实调用的就是readFile
//        DataStreamSource<String> source = env.readTextFile("data/wc.txt");
//        System.out.println(source.getParallelism());  // 8
//
//        SingleOutputStreamOperator<String> mapStream = source.map(String::toUpperCase);
//        System.out.println(mapStream.getParallelism());
//        mapStream.print();
//
//        DataStreamSource<Long> source = env.fromParallelCollection(new NumberSequenceIterator(1, 10), Long.TYPE);
//        System.out.println(source.getParallelism());// 8
//        SingleOutputStreamOperator<Long> map = source.map(x -> x + 1);
//        map.print();
//
//        DataStreamSource<Access> source = env.addSource(new AccessSourceV2()).setParallelism(3); // 对于ParallelSourceFunction是可以根据具体情况来设定并行度的
//        System.out.println(source.getParallelism());
//        source.print();/*** 使用自定义数据源*/
//        env.addSource(new AccessSource()).print();
//        env.addSource(new AccessSourceV2()).setParallelism(3).print(); // 多并行度的可以自行设置并行度/*** 使用Flink自定义MySQL的数据源,进而读取MySQL里面的数据* 该方式已过时 …… flink更新太快了*/env.addSource(new MySQLSource()).print();/*** 单并行度:fromElements  fromCollection  socketTextStream* 多并行度:readTextFile fromParallelCollection generateSequence  readFile* 自定义:*/env.execute("作业名字");}
}

(3)使用Source接口

暂无

4、数据处理(Transformation)

(1)总览

官方文档:
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/operators/overview/

运算符将一个或多个数据流转换为新的数据流。程序可以将多种转换组合成复杂的数据流拓扑。

(2)Map(后续用该结果测试)

把DataStream转换成新的DataStream。

// 将读取的文件,按照,分割,然后每一行数据组成一个Access对象
DataStream<Integer> dataStream = env.readTextFile("data/access.log");
SingleOutputStreamOperator<Access> mapStream = dataStream.map(new MapFunction<String, Access>() {@Overridepublic Access map(String value) throws Exception {String[] splits = value.split(",");Access access = new Access();access.setTime(Long.parseLong(splits[0].trim()));access.setDomain(splits[1].trim());access.setTraffic(Double.parseDouble(splits[2].trim()));return access;}
});
mapStream.print();

(3)Filter

把DataStream转换成新的DataStream。
计算每个元素的布尔函数,并保留函数返回true的元素。
也即:过滤出满足条件的元素。

// 过滤出不为0的元素
dataStream.filter(new FilterFunction<Integer>() {@Overridepublic boolean filter(Integer value) throws Exception {return value != 0; }
});

(4)FlatMap

把DataStream转换成新的DataStream。
可以是一对一、一对多、一对0 一个元素进来,可以出去0、1、多个元素。

dataStream.flatMap(new FlatMapFunction<String, String>() {@Overridepublic void flatMap(String value, Collector<String> out)throws Exception {for(String word: value.split(" ")){ // 把每一个元素按空格分割out.collect(word); // 收集每一个 分割后的 元素}}
});

(5)KeyBy

把DataStream转换为KeyedStream 。

在逻辑上将流划分为不相交的分区。具有相同关键字的所有记录都被分配到同一个分区
在内部,keyBy()是通过散列分区实现的。
(类似Map - Reduce思想)
注意!如果是根据一个对象分组,要重写 hashCode()方法,否则会使用默认的Object.hashCode()。

// 根据value的某个属性分组,相当于mysql的group by
// 通常分组之后,就要求和、求一些统计数据了
dataStream.keyBy(value -> value.getSomeKey());
dataStream.keyBy(value -> value.f0);dataStream
.keyBy(value -> value.getSomeKey())
.sum("field") // 根据字段求和还可以求最大值最小值等
.print();

(6)Reduce

把KeyedStream 转换为 DataStream。
将当前元素与最后一个减少的值合并,并发出新值。

keyedStream.reduce(new ReduceFunction<Integer>() {@Overridepublic Integer reduce(Integer value1, Integer value2)throws Exception {return value1 + value2;}
});

(7)Union

把多个DataStream合并为一个DataStream。
两个或多个数据流的联合,创建一个包含所有流中所有元素的新流。注意:如果您将数据流与其自身联合,您将在结果流中两次获得每个元素。

/*** union:合并多个流* 数据类型问题:union的多个流中数据类型是需要相同的* 数据类型相同的多流操作*/
DataStreamSource<Integer> stream1 = env.fromElements(1, 2, 3);
DataStreamSource<Integer> stream2 = env.fromElements(11, 12, 13);
DataStreamSource<String> stream3 = env.fromElements("A", "B", "C");stream1.union(stream2).map(x -> "PK_" + x).print();
stream1.union(stream1).print();
stream1.union(stream1, stream2).print();

(8)Connect

把两个DataStream 合并为 ConnectedStream。

DataStream<Integer> someStream = //...
DataStream<String> otherStream = //...
ConnectedStreams<Integer, String> connectedStreams = someStream.connect(otherStream);
/*** connect: 数据类型可以不同* 两个流的操作* 只是形式的连接*/
ConnectedStreams<Integer, String> connectedStreams = stream1.connect(stream3);
connectedStreams.map(new CoMapFunction<Integer, String, String>() {// 共享状态String prefix = "common_";// 对第一个流的操作@Overridepublic String map1(Integer value) throws Exception {return prefix + value*10;}// 对第二个流的操作@Overridepublic String map2(String value) throws Exception {return prefix + value.toLowerCase();}
}).print();

(9)CoMap, CoFlatMap

将ConnectedStream 转换为 DataStream。
类似于连接数据流上的map和flatMap。

connectedStreams.map(new CoMapFunction<Integer, String, Boolean>() {@Overridepublic Boolean map1(Integer value) {return true;}@Overridepublic Boolean map2(String value) {return false;}
});
connectedStreams.flatMap(new CoFlatMapFunction<Integer, String, String>() {@Overridepublic void flatMap1(Integer value, Collector<String> out) {out.collect(value.toString());}@Overridepublic void flatMap2(String value, Collector<String> out) {for (String word: value.split(" ")) {out.collect(word);}}
});

(10)Physical Partitioning 分区

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.Partitioner;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;public class PartitionTest2 {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(3); // 一般情况下,并行度跟分区相同,相同分区在同一个线程中执行DataStreamSource<String> sourcePartition = env.readTextFile("data/access.log");sourcePartition// 读取数据转成Access对象.map(new RichMapFunction<String, Access>() {@Overridepublic Access map(String value) throws Exception {String[] splits = value.split(",");Access access = new Access();access.setTime(Long.parseLong(splits[0].trim()));access.setDomain(splits[1].trim());access.setTraffic(Double.parseDouble(splits[2].trim()));return access;}})// 按照指定字段进行分区.partitionCustom(new Partitioner<String>() {@Overridepublic int partition(String key, int numPartitions) {System.out.println(numPartitions);if("test1.com".equals(key)) {return 0;} else if("test2.com".equals(key)) {return 1;} else {return 2;}}}, x -> x.getDomain())// 下面的这段map方法目的是验证:相同的域名是否真的在同一个分区内,看threadid是否相同即可.map(new MapFunction<Access, Access>() {@Overridepublic Access map(Access value) throws Exception {System.out.println("current thread id is " + Thread.currentThread().getId() + ", value is:" + value);return value;}}).print();env.execute("作业名字");}
}

(11)Side Outputs 分流操作

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/side_output/

/*** 分流操作:把一个分拆分成多个流** split 在老的flink版本中是有的,但是新的版本中已经没有这个api** 那就说明新版本肯定提供了更好用的使用方式:side output*/DataStreamSource<String> source = env.readTextFile("data/access.log");
SingleOutputStreamOperator<Access> stream = source.map(new AccessConvertFunction());// 很low的写法
//        SingleOutputStreamOperator<Access> pk1Stream = stream.filter(x -> "test1.com".equals(x.getDomain()));
//        SingleOutputStreamOperator<Access> pk2Stream = stream.filter(x -> "test1.com".equals(x.getDomain()));
//        pk1Stream.print("域名是pk1.com的流");
//        pk2Stream.print("域名是pk2.com的流");// 定义两个Tag
OutputTag<Access> test1OutputTag = new OutputTag<Access>("test1"){};
OutputTag<Access> test2OutputTag = new OutputTag<Access>("test2"){};SingleOutputStreamOperator<Access> processStream = stream.process(new ProcessFunction<Access, Access>() {@Overridepublic void processElement(Access value, Context ctx, Collector<Access> out) throws Exception {if ("test1.com".equals(value.getDomain())) {ctx.output(test1OutputTag, value); // pk1.com的走pk1的OutputTag} else if ("test2.com".equals(value.getDomain())) {ctx.output(test2OutputTag, value);  // pk2.com的走pk2的OutputTag} else {out.collect(value); // pk3.com的走主流}}
});processStream.print("主流:");
processStream.getSideOutput(test1OutputTag).print("test1的:");
processStream.getSideOutput(test2OutputTag).print("test2的:");env.execute("作业名字");

5、数据输出(Data Sinks、Connectors)

(1)总览

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/dev/datastream/overview/#data-sinks
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/connectors/datastream/overview/

数据接收器消费数据流,并将它们转发到文件、Socket、外部系统或打印它们。
Flink自带多种内置输出格式:
writeAsText() / TextOutputFormat:将元素作为字符串逐行写入。字符串是通过调用每个元素的toString()方法获得的。
writeAsCsv(...) / CsvOutputFormat:将元组写入逗号分隔值文件。行和字段分隔符是可配置的。每个字段的值来自对象的toString()方法。
print() / printToErr():打印标准输出/标准错误流中每个元素的toString()值。可选地,可以提供一个前缀(msg),将其附加到输出的前面。这有助于区分不同的打印调用。如果并行度大于1,输出还将加上产生输出的任务的标识符。
writeUsingOutputFormat() / FileOutputFormat:自定义文件输出的方法和基类。支持自定义对象到字节的转换。
writeToSocket:根据SerializationSchema将元素写入Socket。
addSink:调用自定义接收器函数。Flink与其他系统(如Apache Kafka)的连接器捆绑在一起,这些连接器被实现为sink函数。

(2)print

stream.print();
/*
>7> Access{time=202810110120, domain='test1.com', traffic=2000.0}
1> Access{time=202810110120, domain='test2.com', traffic=4000.0}
11> Access{time=202810110120, domain='test1.com', traffic=5000.0}
4> Access{time=202810110120, domain='test3.com', traffic=1000.0}
9> Access{time=202810110120, domain='test2.com', traffic=6000.0}
线程号 + 数据.toString()如果这样:
stream.print().setParallelism(1);
并行度设置为1,那么前面就不会输出数字这样打印红色:
stream.printToErr();
*/

源码:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

(3)自定义Sink打印到控制台

stream.addSink(new RichSinkFunction<Access>() {int subTaskId;// num>@Overridepublic void open(Configuration parameters) throws Exception {super.open(parameters);subTaskId = getRuntimeContext().getIndexOfThisSubtask();}@Overridepublic void invoke(Access value, SinkFunction.Context context) throws Exception {System.out.println(subTaskId + 1 + "> " + value); // 最终执行的方法,输出到终端}
});

(4)写入到文件

// 已过时
// 写入到文件,每一个并行度,会生成一个文件。并行度为1会生成test一个文件
stream.writeAsText("out/test", FileSystem.WriteMode.OVERWRITE).setParallelism(1);// 也已经过时了,推荐使用 org.apache.flink.connector.file.sink.FileSink,需要额外引入包
StreamingFileSink<String> fileSink = StreamingFileSink.forRowFormat(new Path("out"), new SimpleStringEncoder()).withRollingPolicy(DefaultRollingPolicy.builder() // 构建文本滚动生成的策略.withRolloverInterval(Duration.ofMinutes(15)) // 按时间间隔滚动.withInactivityInterval(Duration.ofSeconds(5)) // 按不活跃滚动.withMaxPartSize(MemorySize.ofMebiBytes(1)) // 按大小滚动.build()).build();
// 数据类型需要前后对应
stream.map(Access::toString).addSink(fileSink);

(5)输出到MySQL

JdbcSink.sink提供至少一次保证。然而有效的是,通过创建upsert SQL语句或幂等SQL更新可以实现“恰好一次”。

<dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-jdbc</artifactId><version>3.1.1-1.17</version>
</dependency>
// 写入到mysql
// 需要使用upsert语句
SinkFunction<Access> jdbcSink = JdbcSink.sink(// sql"insert into access (id, name) values (?, ?) on duplicate key update name=VALUES(name)",// sql的参数(JdbcStatementBuilder<Access>) (preparedStatement, access) -> {preparedStatement.setInt(1, (int)access.getTraffic());preparedStatement.setString(2, access.getDomain());},// 执行参数JdbcExecutionOptions.builder().withBatchSize(5).withBatchIntervalMs(200).withMaxRetries(5) // 重试.build(),// jdbc连接信息new JdbcConnectionOptions.JdbcConnectionOptionsBuilder().withUrl("jdbc:mysql://192.168.56.10:3306/testdb").withDriverName("com.mysql.jdbc.Driver").withUsername("root").withPassword("root").build()
);stream.addSink(jdbcSink);

自1.13起, Flink JDBC sink支持恰好一次模式。该实现依赖于XA标准的JDBC驱动程序支持。如果数据库也支持XA,则大多数驱动程序都支持XA(因此驱动程序通常是相同的)。

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.fromElements(...).addSink(JdbcSink.exactlyOnceSink("insert into books (id, title, author, price, qty) values (?,?,?,?,?)",(ps, t) -> {ps.setInt(1, t.id);ps.setString(2, t.title);ps.setString(3, t.author);ps.setDouble(4, t.price);ps.setInt(5, t.qty);},JdbcExecutionOptions.builder().withMaxRetries(0).build(),JdbcExactlyOnceOptions.defaults(),() -> {// create a driver-specific XA DataSource// The following example is for derby EmbeddedXADataSource ds = new EmbeddedXADataSource();ds.setDatabaseName("my_db");return ds;});
env.execute();

(6)输出到Redis

https://bahir.apache.org/docs/flink/current/flink-streaming-redis/

public static class RedisExampleMapper implements RedisMapper<Tuple2<String, String>>{@Overridepublic RedisCommandDescription getCommandDescription() {return new RedisCommandDescription(RedisCommand.HSET, "HASH_NAME");}@Overridepublic String getKeyFromData(Tuple2<String, String> data) {return data.f0;}@Overridepublic String getValueFromData(Tuple2<String, String> data) {return data.f1;}
}
FlinkJedisPoolConfig conf = new FlinkJedisPoolConfig.Builder().setHost("127.0.0.1").build();DataStream<String> stream = ...;
stream.addSink(new RedisSink<Tuple2<String, String>>(conf, new RedisExampleMapper());

(7)输出到Socket

// 输出到Socket,注意类型匹配,输出为字符串
stream.map(Access::toString).writeToSocket("localhost", 9528, new SimpleStringSchema());

(8)输出到Kafka

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/connectors/datastream/kafka/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/464556.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

罗德里格斯公式简要介绍

一、罗德里格斯公式&#xff08;Rodrigues’ rotation formula&#xff09;是一个用于计算绕任意轴旋转向量的数学公式。它是由欧仁罗德里格斯&#xff08;Olinde Rodrigues&#xff09;在1840年提出的。这个公式在三维空间中描述了一个向量绕着单位向量旋转θ角度后的结果。 …

C++对象继承

继承概念&#xff1a; 首先引入一个生活例子&#xff0c;普通人是一个类对象&#xff0c;学生是一个类对象&#xff0c;普通人拥有的属性学生一定会有&#xff0c;学生拥有的属性普通人不一定有。类比一下&#xff0c;把普通人抽象为A对象&#xff0c;学生抽象为B对象&#xf…

Easy Excel动态表头的实现

步骤&#xff1a; 1.查找官方API文档理解实现 2.实现融入到代码里面 一&#xff1a;Easy Excel动态头实时生成头写入 动态头实时生成头写入 二&#xff1a;实现 目的&#xff1a;实现表头为&#xff0c;第一列是固定列&#xff0c;第二列为动态生成的时间段的每一天的日期…

2024年【上海市安全员C3证】考试及上海市安全员C3证新版试题

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2024年【上海市安全员C3证】考试及上海市安全员C3证新版试题&#xff0c;包含上海市安全员C3证考试答案和解析及上海市安全员C3证新版试题练习。安全生产模拟考试一点通结合国家上海市安全员C3证考试最新大纲及上海市…

3D立方体图册

<!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>3D立方体图册</title><style>* {pad…

在 Windows上恢复删除照片的 4 种有效方法

您是否曾在 Windows 7/8/10/11 中不小心删除过照片&#xff1f;如何轻松快速地恢复已删除的照片&#xff1f;在这里这篇文章列出了几种在Windows 11/10/8/7中恢复已删除照片的可行方法&#xff0c;而MiniTool数据恢复软件 是丢失照片恢复的最佳选择。 意外删除的照片 根据一项…

Scrum敏捷开发管理全流程-敏捷管理工具

Leangoo领歌是款永久免费的专业的敏捷开发管理工具&#xff0c;提供端到端敏捷研发管理解决方案&#xff0c;涵盖敏捷需求管理、任务协同、进展跟踪、统计度量等。 Leangoo领歌上手快、实施成本低&#xff0c;可帮助企业快速落地敏捷&#xff0c;提质增效、缩短周期、加速创新。…

力扣 第 383 场周赛 解题报告 | KMP

力扣 第 383 场周赛 解题报告 | KMP 链接 前言 一个人能走的多远不在于他在顺境时能走的多快&#xff0c;而在于他在逆境时多久能找到曾经的自己。 T1 修改矩阵 思路&#xff1a;模拟 时间复杂度&#xff1a; O ( m n ) O(mn) O(mn) class Solution:def modifiedMatrix(se…

【数学建模】【2024年】【第40届】【MCM/ICM】【E题 财产保险的可持续性】【解题思路】

一、题目 &#xff08;一&#xff09; 赛题原文 2024 ICM Problem E: Sustainability of Property Insurance Extreme-weather events are becoming a crisis for property owners and insurers. The world has endured “more than $1 trillion in damages from more than …

LeetCode Python - 6.Z字形变换

文章目录 题目答案运行结果 题目 将一个给定字符串 s 根据给定的行数 numRows &#xff0c;以从上往下、从左到右进行 Z 字形排列。 比如输入字符串为 “PAYPALISHIRING” 行数为 3 时&#xff0c;排列如下&#xff1a; P A H N A P L S I I G Y I R 之后&#xff0c;你的输…

假期day5

TCP UDP区别 共同点&#xff1a;都是属于传输层的协议 TCP&#xff1a;稳定。面向连接的&#xff0c;有可靠的数据传输服务。传输过程中数据无误&#xff0c;无丢失&#xff0c;无失序&#xff0c;无重复。传输效率低&#xff0c;耗费资源多。数据收发不同步&#xff0c;有沾…

大模型训练所需的硬件配置

1. 引入 训练一个大模型&#xff0c;到底需要投入多少块GPU&#xff0c;需要多少数据&#xff0c;训练多长时间能达到一个不错的效果&#xff1f; 本文引用靠谱的数据&#xff0c;来回答这些问题。 2. 全流程训练 大模型的训练&#xff0c;简单来说&#xff0c;分为Pretrain…