机器学习系列——(十五)随机森林回归

引言

在机器学习的众多算法中,随机森林以其出色的准确率、对高维数据的处理能力以及对训练数据集的异常值的鲁棒性而广受欢迎。它是一种集成学习方法,通过构建多个决策树来进行预测和分类。本文将重点介绍随机森林在回归问题中的应用,即随机森林回归(Random Forest Regression)。

一、概念

随机森林回归是基于决策树的集成学习技术。在这个模型中,我们构建多个决策树,并将它们的预测结果合并来得到最终的回归输出。这种方法的核心思想是“集体智慧”,即多个模型的组合通常会比单个模型表现得更好。

1.1 决策树回归

为了更好地理解随机森林回归,首先需要了解其基础构成单元:决策树回归。决策树是一种非常直观的模型,它通过一系列的问题(基于特征的判断)来进行预测。在回归问题中,决策树的每一个叶节点代表的是一个连续值,而不是分类中的类别标签。

1.2 随机性引入

随机森林算法通过两种主要方式引入随机性来构建多个决策树:

  • 自助采样(Bootstrap sampling):每棵树的训练数据是通过从原始数据中进行有放回抽样得到的。这意味着同一份数据可能在一个树的训练集中出现多次,而在另一个树的训练集中完全没有。
  • 特征的随机选择:在分裂决策树的每个节点时,算法会从所有特征中随机选择一个子集,然后只考虑这个子集中的特征来找到最佳分裂点。这不仅增加了树之间的差异性,还提高了模型对于单个特征的噪声的鲁棒性。

二、工作流程

随机森林回归的工作流程可以概括为以下几个步骤:

  1. 创建多个决策树:通过自助采样得到多个训练数据子集,为每个子集构建一棵决策树。
  2. 节点分裂时随机选择特征:在构建每棵树的过程中,当需要分裂一个节点时,从一个随机选择的特征子集中选择最佳分裂特征。
  3. 预测与聚合:对于回归问题,每棵树会给出一个预测值。随机森林的最终预测结果是所有树预测值的平均。

三、优点与应用

随机森林回归具有多方面的优点:

  • 准确性高:通过集成多个决策树,减少了模型的方差,使得随机森林在多数情况下比单个决策树表现得更好。
  • 防止过拟合:引入的随机性帮助降低了模型的过拟合风险。
  • 灵活性高:能够处理数值型和类别型特征,不需要对数据进行太多的预处理,如归一化。
  • 易于理解和解释:虽然随机森林涉及多个决策树,但是每棵树的构造和决策过程都是直观的。

随机森林回归被广泛应用于各个领域,包括但不限于金融市场分析、医疗诊断、股票价格预测、房价预测等。

总结

随机森林回归是一种强大而灵活的机器学习算法,它通过集成多个决策树来提高预测的准确性和鲁棒性。由于其出色的性能和易于理解的特性,随机森林成为了解决回归问题的首选算法之一。无论是数据科学新手还是经验丰富的专家,都可以从随机森林回归中受益匪浅。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/464783.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

人工智能能产生情绪吗?

此图片来源于网络 一、人情绪的本质是什么? 人的情绪本质是一个复杂的现象,涉及到生理、心理和社会的多个层面。以下是关于情绪本质的几种观点: 情绪的本质是生命能量的表达。情绪被认为是生命能量的一种体现,通过情绪的体验和…

机器人学中的数值优化(一)

Preliminaries 0 前言 最优解 x ∗ x^{*} x∗在满足约束的所有向量中具有最小值。 两个基本的假设: (1)目标函数有下界 目标函数不能存在负无穷的值,这样会使得最小值无法在计算机中用浮点数表示,最小值可以很小但必须…

05.坐标系

1. 坐标系原点 坐标系原点就是屏幕/窗口的左上角,X向右增长,Y向下增长。 2.设置控件位置 设置控件位置,就相当于是需要指定控件的坐标,对于该控件来说,其坐标原点是其父窗口/父控件的左上角。 设置方法就是通过控件的…

轴角与旋转矩阵的转换

一、轴角转换成旋转矩阵 C实现 #include <iostream> #include <Eigen/Dense> #define _USE_MATH_DEFINES #include <math.h> using namespace std;int main() {double theta M_PI/2;//90度Eigen::Vector3d xyz(1, 0, 0);//x轴Eigen::AngleAxisd rotation…

第9章 智能租房——详情页

学习目标 掌握详情页房源数据展示功能的逻辑&#xff0c;能够实现在详情页上展示基本信息和配套设施 了解数据可视化&#xff0c;能够说出数据可视化的概念和流程 熟悉ECharts的用法和配置项&#xff0c;能够通过ECharts绘制常用图表&#xff0c;并为图表添加配置项 掌握户型…

FPGA_工程_基于Rom的VGA图像显示

一 工程框图 框图中&#xff0c;CLK_in&#xff0c;Vga_ctrl&#xff0c;Vga_pic模块已有&#xff0c;只需要对顶层模块进行修改&#xff0c;并将rom ip例化添加到Vga_pic模块的.v文件中&#xff0c;对Vga_pic的.v文件进行一定修改。 二 理论补充 显示图像的方法&#xff1a;…

【二叉树】构建销毁二叉树

目录 创建二叉树 整体思路 代码实现 图示理解​ 销毁二叉树 判断二叉树是否是完全二叉树&层序 整体思路 代码实现 图是理解 二叉树的性质 题目 创建二叉树 整体思路 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树遇到#就回退&#xff0c;返回…

c语言游戏实战(4):人生重开模拟器

前言&#xff1a; 人生重开模拟器是前段时间非常火的一个小游戏&#xff0c;接下来我们将一起学习使用c语言写一个简易版的人生重开模拟器。 网页版游戏&#xff1a; 人生重开模拟器 (ytecn.com) 1.实现一个简化版的人生重开模拟器 &#xff08;1&#xff09; 游戏开始的时…

视觉SLAM十四讲学习笔记(二)三维空间刚体

哔哩哔哩课程连接&#xff1a;视觉SLAM十四讲ch3_哔哩哔哩_bilibili​ 目录 一、旋转矩阵 1 点、向量、坐标系 2 坐标系间的欧氏变换 3 变换矩阵与齐次坐标 二、实践&#xff1a;Eigen&#xff08;1&#xff09; 运行报错记录与解决 三、旋转向量和欧拉角 1 旋转向量 …

程序员如何 “高效学习”?

开篇先说说我吧&#xff0c;马上人生要步入30岁的阶段&#xff0c;有些迷茫&#xff0c;更多的是焦虑&#xff0c;因为行业的特殊性导致我无时无刻不对 “青春饭” 的理论所担忧。担忧归担忧&#xff0c;生活还要继续&#xff0c;我们都知道这行全靠 “学习” 二字&#xff0c;…

Java多态原理

参考 虚方法 JVM杂记&#xff1a;对多态实现原理、虚方法表、虚方法、静态解析、动态链接的一些思考_多态和方法表的关系-CSDN博客 静态分派与动态分派 &#xff08;JVM&#xff09;Java虚拟机&#xff1a;静态分派 & 动态分派 原理解析 - 掘金 虚方法表 JVM 栈帧&am…

vscode配置wsl ubuntu c++的环境

在ubuntu安装llvm/clang sudo apt install llvm clang clangd lldb vscode的调试器接口是按GDB开发的&#xff0c;所以需要一个适配器&#xff0c;lldb-mi就是这个适配器。lldb-mi原来是llvm项目的一部分&#xff0c;后面成为了一个单独的项目https://github.com/lldb-tools/…