python coding with ChatGPT 打卡第20天| 二叉搜索树:搜索、验证、最小绝对差、众数

相关推荐
python coding with ChatGPT 打卡第12天| 二叉树:理论基础
python coding with ChatGPT 打卡第13天| 二叉树的深度优先遍历
python coding with ChatGPT 打卡第14天| 二叉树的广度优先遍历
python coding with ChatGPT 打卡第15天| 二叉树:翻转二叉树、对称二叉树
python coding with ChatGPT 打卡第16天| 二叉树:完全二叉树、平衡二叉树、二叉树的所有路径、左叶子之和
python coding with ChatGPT 打卡第17天| 二叉树:找树左下角的值、路径总和
python coding with ChatGPT 打卡第18天| 二叉树:从中序与后序遍历序列构造二叉树、最大二叉树
python coding with ChatGPT 打卡第19天| 二叉树:合并二叉树

二叉搜索树中的搜索

Key Points

1.二叉搜索树是一个有序树:

- 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
- 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
- 它的左、右子树也分别为二叉搜索树

2.二叉搜索树的迭代
一提到二叉树遍历的迭代法,可能立刻想起使用栈来模拟深度遍历,使用队列来模拟广度遍历。

对于二叉搜索树可就不一样了,因为二叉搜索树的特殊性,也就是节点的有序性,可以不使用辅助栈或者队列就可以写出迭代法

对于一般二叉树,递归过程中还有回溯的过程,例如走一个左方向的分支走到头了,那么要调头,在走右分支。

对于二叉搜索树,不需要回溯的过程,因为节点的有序性就帮我们确定了搜索的方向

相关题目

700. 二叉搜索树中的搜索

视频讲解

这次搜索有方向了

重点分析

方法一:
递归法

def searchBST(root, val):if not root:return Noneif root.val > val:return searchBST(root.left, val)if root.val < val:return searchBST(root.right, val)return root

方法二:
迭代法

def searchBST(root, val):current = rootwhile current:if current.val > val:current = current.leftcontinueif current.val < val:current = current.rightcontinueelse:breakreturn current

验证二叉搜索树

Key Points

中序遍历下,输出的二叉搜索树节点的数值是升序序列。

相关题目

98. 验证二叉搜索树

视频讲解

你对二叉搜索树的了解还不够

重点分析

方法一:
不使用有序序列
在这里插入图片描述
我们可以定义一个辅助函数checkBST,它接收四个参数:当前节点node、minVal(当前节点值允许的最小值)、maxVal(当前节点值允许的最大值)、以及初始的根节点root。这个辅助函数将帮助我们递归地验证每个子树,同时保持跟踪允许的值的范围。

def checkBST(node, minVal, maxVal):if not node:return Trueif node.val <= minVal or node.val >= maxVal:return Falsereturn checkBST(node.left, minVal, node.val) and checkBST(node.right, node.val, maxVal)def isValidBST(root):return checkBST(root, float('-inf'), float('inf'))

这段代码使用了一个嵌套的辅助函数checkBST来递归地验证每个节点是否符合二叉搜索树的条件,它通过维护每个节点的值允许的最小值和最大值来实现。这种方法能够确保所有的左子树节点都小于它的父节点,并且所有的右子树节点都大于它的父节点,同时还考虑了所有祖先节点的约束条件。

方法二:
使用有序序列 + 双指针 递归法
在这里插入图片描述

class Solution:def __init__(self):self.pre = None  # 用来记录前一个节点def isValidBST(self, root):if root is None:return Trueleft = self.isValidBST(root.left)if self.pre is not None and self.pre.val >= root.val:return Falseself.pre = root  # 记录前一个节点right = self.isValidBST(root.right)return left and right

方法三:
使用有序序列 + 双指针 迭代法

在这里插入图片描述

def isValidBST(root):stack = []prev = Nonewhile stack or root:# 遍历到最左while root:stack.append(root)root = root.left# 访问节点root = stack.pop()# 检查当前节点是否大于前一个节点if prev and root.val <= prev.val:return Falseprev = root# 转向右子树root = root.rightreturn True

二叉搜索树的最小绝对差

Key Points

  1. 在升序数组中,任意两个相邻元素的差值最小
  2. 1)暴力法:先中序遍历得到升序数列,再遍历数组求最小差值;
    2)简化法:遍历的过程中使用双指针

相关题目

530. 二叉搜索树的最小绝对差

视频讲解

二叉搜索树中的双指针遍历

重点分析

方法一:
递归法

class Solution(object):def __init__(self):self.pre = None   self.diff = float('inf')  # 只使用一次,所以是全局变量def getMinimumDifference(self, root):self.in_traversal(root)return self.diffdef in_traversal(self, root):if not root:returnself.in_traversal(root.left)if self.pre:self.diff = min(root.val - self.pre.val, self.diff)self.pre = rootself.in_traversal(root.right)return

方法二:
迭代法 + 暴力

def getMinimumDifference(root):stack_record = []current = rootres = []while stack_record or current:while current:stack_record.append(current)current = current.leftcurrent = stack_record.pop()res.append(current.val)# 左中都处理完了,转向右current = current.righti = 0j = i+1diff = res[j] - res[i]while j < len(res):diff = min(res[j] - res[i], diff)i += 1j += 1return diff

注:LeetCode题目中说明节点至少为两个,所以使用双指针不用讨论数组长度

方法三:
迭代法+简化

def getMinimumDifference(root):stack_record = []current = rootdiff = float('inf')pre = Nonewhile stack_record or current:while current:stack_record.append(current)current = current.leftcurrent = stack_record.pop()if pre is None:   # if not pre 不行,警惕0的情况pre = current.valelse:diff = min(current.val-pre, diff)pre = current.valcurrent = current.rightreturn diff

二叉搜索树中的众数

Key Points

首先如果不是二叉搜索树的话,应该怎么解题,是二叉搜索树,又应该如何解题,两种方式做一个比较,可以加深大家对二叉树的理解。

  1. 如果不是二叉搜索树,最直观的方法一定是把这个树都遍历了,用map统计频率,把频率排个序,最后取前面高频的元素的集合。
  2. 对于二叉搜索树,遍历有序数组的元素出现频率,从头遍历,那么一定是相邻两个元素作比较,然后就把出现频率最高的元素输出就可以了。

相关题目

501. 二叉搜索树中的众数

视频讲解

双指针+代码技巧

重点分析

方法一:
暴力法 哈希表(迭代)

def findMode(root):res = []stack_record = []current = rootwhile stack_record or current:while current:stack_record.append(current)current = current.leftcurrent = stack_record.pop()res.append(current.val)current = current.rightrecord = {}for x in res:record[x] = record.get(x, 0) + 1record_sort = sorted(record.items(), key=lambda x:x[1], reverse=True)results = []max_val = record_sort[0][1]for x in record_sort:if x[1] == max_val:results.append(x[0])else:breakreturn results

方法二:
遍历两遍 双指针 (迭代法)

def findMode(root):res = []stack_record = []current = rootwhile stack_record or current:while current:stack_record.append(current)current = current.leftcurrent = stack_record.pop()res.append(current.val)current = current.rightpre = Nonecount = 0max_count = 0results = []for x in res:if pre is not None:if pre == x:count +=1else:count = 1else:count = 1pre = xif count == max_count:results.append(x)elif count > max_count:max_count = countresults = [x]return results

方法三:
遍历一遍 迭代法

def findMode(root):res = []pre = Nonemax_count = 0count = 0stack_record = []current = rootwhile stack_record or current:while current:stack_record.append(current)current = current.leftcurrent = stack_record.pop()if pre:if current.val == pre.val:count += 1else:count = 1else:count = 1pre = currentif count == max_count:res.append(current.val)elif count > max_count:max_count = countres = [current.val]current = current.rightreturn res

方法四:
遍历一遍 递归法

class Solution:def __init__(self):self.pre = Noneself.res = []self.max_count = 0self.count = 0def in_traversal(self, root):if not root:returnself.in_traversal(root.left)if self.pre:if root.val == self.pre.val:self.count += 1else:self.count = 1else:self.count = 1self.pre = rootif self.count == self.max_count:self.res.append(root.val)elif self.count > self.max_count:self.max_count = self.countself.res = [root.val]self.in_traversal(root.right)returndef findMode(self, root):self.in_traversal(root)return self.res

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/465141.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

opencv图像像素的读写操作

void QuickDemo::pixel_visit_demo(Mat & image) {int w image.cols;//宽度int h image.rows;//高度int dims image.channels();//通道数 图像为灰度dims等于一 图像为彩色时dims等于三 for (int row 0; row < h; row) {for (int col 0; col < w; col) {if…

Redis -- 数据库管理

目录 前言 切换数据库(select) 数据库中key的数量&#xff08;dbsize&#xff09; 清除数据库&#xff08;flushall flushdb&#xff09; 前言 MySQL有一个很重要的概念&#xff0c;那就是数据库database&#xff0c;一个MySQL里面有很多个database&#xff0c;一个datab…

vue核心技术(二)

◆ 指令补充 指令修饰符 通过 "." 指明一些指令 后缀&#xff0c;不同 后缀 封装了不同的处理操作 → 简化代码 v-bind 对于样式控制的增强 为了方便开发者进行样式控制&#xff0c; Vue 扩展了 v-bind 的语法&#xff0c;可以针对 class 类名 和 style 行内样式…

HiveSQL——用户行为路径分析

注&#xff1a;参考文档&#xff1a; SQL之用户行为路径分析--HQL面试题46【拼多多面试题】_路径分析 sql-CSDN博客文章浏览阅读2k次&#xff0c;点赞6次&#xff0c;收藏19次。目录0 问题描述1 数据分析2 小结0 问题描述已知用户行为表 tracking_log&#xff0c; 大概字段有&…

【漏洞复现】狮子鱼CMS文件上传漏洞(wxapp.php)

Nx01 产品简介 狮子鱼CMS&#xff08;Content Management System&#xff09;是一种网站管理系统&#xff0c;它旨在帮助用户更轻松地创建和管理网站。该系统拥有用户友好的界面和丰富的功能&#xff0c;包括页面管理、博客、新闻、产品展示等。通过简单直观的管理界面&#xf…

Z-Stack一直卡在HAL_BOARD_INIT();

原因是Debugger没有配置好&#xff0c;因为默认是Simulator&#xff0c;不是TI的驱动&#xff0c;所以仿真出现一直卡在 HAL_BOARD_INIT(); 的情况&#xff0c;解决方法就是将Simulator改为Texas Instruments 改成下面的样子

【Java EE初阶十二】网络编程TCP/IP协议(一)

1. 网络编程 通过网络&#xff0c;让两个主机之间能够进行通信->就这样的通信来完成一定的功能&#xff0c;进行网络编程的时候&#xff0c;需要操作系统给咱们提供一组API&#xff0c;通过这些API来完成编程&#xff1b;API可以认为是应用层和传输层之间交互的路径&#xf…

CTFshow-WEB入门-信息搜集

web1&#xff08;查看注释1&#xff09; wp 右键查看源代码即可找到flag web2&#xff08;查看注释2&#xff09; wp 【CtrlU】快捷键查看源代码即可找到flag web3&#xff08;抓包与重发包&#xff09; wp 抓包后重新发包&#xff0c;在响应包中找到flag web4&#xff08;robo…

面试经典150题——三数之和

​"The road to success and the road to failure are almost exactly the same." - Colin R. Davis 1. 题目描述 2. 题目分析与解析 2.1 思路一——暴力方法 因为三个数相加为0&#xff0c;那么说明其中两个加数的和与另一个加数为相反数则满足题意。所以可以得到…

CSP-201912-1-报数

CSP-201912-1-报数 知识点总结 整数转化为字符串#include <string> string str_num to_string(num);字符串中查找是否包含字符‘7’&#xff1a;str_num.find(7) 未找到返回-1找到返回返回该字符在字符串中的位置&#xff08;即第一次出现的索引位置&#xff09; #i…

Netty应用(六) 之 异步 Channel

目录 12.Netty异步的相关概念 12.1 异步编程的概念 12.2 方式1&#xff1a;主线程阻塞&#xff0c;等待异步线程完成调用&#xff0c;然后主线程发起请求IO 12.3 方式2&#xff1a;主线程注册异步线程&#xff0c;异步线程去回调发起请求IO 12.4 细节注释 12.5 异步的好处…

【MySQL基础】:深入探索DQL数据库查询语言的精髓(上)

&#x1f3a5; 屿小夏 &#xff1a; 个人主页 &#x1f525;个人专栏 &#xff1a; MySQL从入门到进阶 &#x1f304; 莫道桑榆晚&#xff0c;为霞尚满天&#xff01; 文章目录 &#x1f4d1;前言一. DQL1.1 基本语法1.2 基础查询1.3 条件查询1.3 聚合函数 &#x1f324;️ 全篇…