【大厂AI课学习笔记】【1.6 人工智能基础知识】(3)神经网络

深度学习是机器学习中一种基于对数据进行表征学习的算法。观测值(例如一幅草莓照片)可以使用

多种方式来表示,如每个像素强度值的向量,或者更抽象地表示成一系列边、特定形状的区域等。

深度学习的最主要特征是使用神经网络作为计算模型。神经网络模型 得名于其对于动物神经元传递信息方式的模拟。

实际上,现在的神经网络模型,和神经,已经没有特别大的关系了。

深度学习的深度,一般指神经网络的层数。一般有2-3个隐藏层;深层神经网络,隐藏层可能有150层;

背景知识梳理:

神经网络的定义

神经网络(Neural Networks)是一种模拟人脑神经元连接方式的计算模型,用于处理信息、学习和识别模式。它由大量相互连接的神经元(或称为节点、单元)组成,每个神经元接收来自其他神经元的输入信号,并根据这些信号产生输出。神经网络通过调整神经元之间的连接权重来学习和适应新数据。

发展脉络

  1. 起源:神经网络的灵感来源于生物学中的神经系统。1943年,心理学家Warren McCulloch和数学家Walter Pitts提出了第一个基于生物神经系统的计算模型。
  2. 感知机:1957年,Frank Rosenblatt发明了感知机(Perceptron),这是一种简单的二元线性分类器,可以学习并解决一些基本问题。然而,它不能处理异或(XOR)等非线性问题。
  3. 反向传播算法:1986年,Rumelhart、Hinton和Williams提出了反向传播(Backpropagation)算法,这是训练多层神经网络的关键技术。它允许网络学习更复杂的非线性模式。
  4. 深度学习:2006年,Hinton等人提出了“深度学习”的概念,并展示了如何使用无监督预训练和有监督微调来训练深度置信网络(DBN)。这标志着深度学习时代的开始。
  5. 卷积神经网络(CNN):Yann LeCun等人在1998年提出了卷积神经网络(Convolutional Neural Networks, CNN),用于图像识别。CNN在图像处理任务中表现出色。
  6. 循环神经网络(RNN):RNN是为了处理序列数据而设计的,它能够捕捉序列中的时间依赖性。RNN在自然语言处理(NLP)和语音识别等领域有广泛应用。
  7. 生成对抗网络(GAN):2014年,Goodfellow等人提出了生成对抗网络(Generative Adversarial Networks, GAN),它由生成器和判别器两个神经网络组成,用于生成逼真的新数据。
  8. Transformer架构:2017年,Vaswani等人提出了Transformer架构,它完全基于自注意力机制(self-attention),并在自然语言处理任务中取得了巨大成功,如BERT、GPT等模型。

神经网络的类型与关键技术构成

  1. 前馈神经网络:信息从输入层单向传递到输出层,没有循环或反馈连接。关键技术包括激活函数(如ReLU、sigmoid、tanh等)、权重初始化和正则化(如L1、L2正则化)。
  2. 卷积神经网络(CNN):专门用于处理图像数据。关键技术包括卷积层、池化层、全连接层和激活函数。CNN通过卷积层提取图像特征,并通过池化层降低数据维度。
  3. 循环神经网络(RNN):处理序列数据,如文本或时间序列数据。关键技术包括循环连接、长短时记忆单元(LSTM)和门控循环单元(GRU),用于捕捉序列中的长期依赖性。
  4. 生成对抗网络(GAN):由生成器和判别器组成,通过对抗性训练生成新数据。关键技术包括生成器和判别器的设计、损失函数的选择以及训练策略。
  5. 自编码器:用于无监督学习,尝试复制其输入到输出。关键技术包括编码器和解码器的设计,以及损失函数(如均方误差)的选择。
  6. Transformer架构:基于自注意力机制处理序列数据。关键技术包括多头自注意力机制、位置编码和前馈神经网络层。

如何构建神经网络

构建神经网络通常涉及以下步骤:

  1. 定义网络结构:确定输入层、隐藏层和输出层的神经元数量以及层与层之间的连接方式。
  2. 初始化权重和偏置:随机初始化神经元的权重和偏置值。
  3. 选择激活函数:为神经网络的每一层选择一个激活函数。
  4. 定义损失函数:根据任务类型(分类、回归等)选择合适的损失函数。
  5. 选择优化器:如梯度下降、随机梯度下降(SGD)、Adam等,用于更新权重和偏置以最小化损失函数。
  6. 训练网络:使用训练数据集进行前向传播计算损失,然后通过反向传播算法计算梯度并更新权重和偏置。
  7. 评估网络性能:使用验证数据集评估网络的性能,并根据需要进行调整(如超参数调优)。
  8. 应用网络:使用测试数据集评估网络的最终性能,并将其应用于实际任务中。

示例

使用TensorFlow构建简单的神经网络进行MNIST手写数字分类
 

import tensorflow as tf  
from tensorflow.keras.datasets import mnist  
from tensorflow.keras.models import Sequential  
from tensorflow.keras.layers import Dense, Flatten  
from tensorflow.keras.losses import SparseCategoricalCrossentropy  
from tensorflow.keras.optimizers import Adam  # 加载MNIST数据集  
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()  # 数据预处理:归一化和展平  
train_images = train_images.reshape((60000, 28 * 28)) / 255.0  
test_images = test_images.reshape((10000, 28 * 28)) / 255.0  # 构建神经网络模型  
model = Sequential([  Dense(128, activation='relu', input_shape=(28 * 28,)),  # 输入层与第一个隐藏层  Dense(64, activation='relu'),  # 第二个隐藏层  Dense(10, activation='softmax')  # 输出层,10个类别(0-9)  
])  # 编译模型:指定损失函数、优化器和评估指标  
model.compile(optimizer=Adam(),  loss=SparseCategoricalCrossentropy(),  metrics=['accuracy'])  # 训练模型  
model.fit(train_images, train_labels, epochs=5, batch_size=32)  # 评估模型性能  
test_loss, test_acc = model.evaluate(test_images, test_labels)  
print(f'Test accuracy: {test_acc}')

这段代码使用TensorFlow库构建了一个简单的三层神经网络(包括输入层、两个隐藏层和一个输出层),用于对MNIST手写数字数据集进行分类。通过调整网络结构、激活函数、损失函数和优化器等组件,可以进一步优化模型的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/465523.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

汉服租赁网站:Java技术的文化应用

✍✍计算机编程指导师 ⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡ Java实战 |…

指纹浏览器能为TikTok运营提供哪些便利?

在数字时代,TikTok已成为全球短视频平台的佼佼者,吸引了数以亿计的活跃用户。为了更有效地进行TikTok运营,许多人开始探索先进的工具和技术。本文将重点探讨指纹浏览器如何为TikTok运营提供便利,提高账户管理的效率和安全性。 1.账…

用code去探索理解Llama架构的简单又实用的方法

除了白月光我们也需要朱砂痣 我最近也在反思,可能有时候算法和论文也不是每个读者都爱看,我也会在今后的文章中加点code或者debug模型的内容,也许还有一些好玩的应用demo,会提升这部分在文章类型中的比例 今天带着大家通过代码角度…

Ubuntu Desktop - Details (设备详情)

Ubuntu Desktop - Details [设备详情] 1. OverviewReferences 1. Overview System Settings -> Details -> Overview ​ References [1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/

学习Android的第十天

目录 Android CheckBox 复选框 获得选中的 CheckBox 的值 自定义点击效果 改变文字与选择框的相对位置 修改文字与选择框的距离 Android ToggleButton 开关按钮 改变 ToggleButton 的状态和文本 Android Switch 开关 改变 Switch 的状态和文本 Android CheckBox 复选框…

骑砍战团MOD开发(44)-可编程渲染管线shader编程

一.可编程渲染管线 在GPU进行3D模型投射到2D平面过程中,渲染管线算法对开发者开放,目前支持的编程语言有OpenGL的ARB语言(pp文件),Direct3D的HLSL高级shader编程语言(fx文件). Direct3D提供一下API实现程序加载shader着色器文件: D3DXCreateEffectFromFile(gDevice,"fxfn…

《UE5_C++多人TPS完整教程》学习笔记11 ——《P12 Steam 地区(Steam Regions)》

本文为B站系列教学视频 《UE5_C多人TPS完整教程》 —— P12 Steam 地区(Steam Regions)》 的学习笔记,该系列教学视频为 Udemy 课程 《Unreal Engine 5 C Multiplayer Shooter》 的中文字幕翻译版,UP主(也是译者&#…

sheng的学习笔记-docker部署springboot

部署文章目录:目录 docker部署,原理,命令,可以参考:docker原理图,部署,命令 目录 将springboot部署到docker中 遇到过的问题: pom配置 操作步骤 生成jar 构建镜像 查看镜像d…

使用client-only 解决组件不兼容SSR问题

目录 前言 一、解决方案 1.基于Nuxt 框架的SSR应用 2.基于vue2框架的应用 3.基于vue3框架的应用 二、总结 往期回顾 前言 最近在我的单页面SSR应用上开发JSON编辑器功能,在引入组件后直接客户端跳转OK,但是在直接加载服务端渲染的时候一直报这…

java基础(3) 异常处理 -反射

异常处理 处理异常一般有两种 约定返回错误码。,比如读写一个文件,返回code为0则成功,返回1表示不存在,返回2表示没权限…在语言层面上提供一个异常处理机制。(java就属于第二种) java的异常 java内置了一套异常处理机制&…

基于微信小程序的在线课堂的研究与实现,附源码

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝30W、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…

基于matlab的密度散点图绘制

1. 什么是密度散点图? 密度散点图就是在普通散点图的基础上,基于样本点一定范围的样本数计算该样本点的密度,以不同的颜色来显示样本点密度的大小,这样能够直观的显示出数据的空间聚集情况,如下图分别是二维和三维密度…