【AI大模型应用开发】【LangChain系列】6. LangChain的Callbacks模块:监控调试程序的重要手段

大家好,我是【同学小张】。持续学习,持续干货输出,关注我,跟我一起学AI大模型技能。

LangChain提供了一个回调系统,允许您挂接到LLM应用程序的各个阶段。这对于日志记录、监视、流式传输和其他任务非常有用。

0. LangChain Callbacks模块提供的Callback接口一览

class BaseCallbackHandler:"""Base callback handler that can be used to handle callbacks from langchain."""def on_llm_start(self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) -> Any:"""Run when LLM starts running."""def on_chat_model_start(self, serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) -> Any:"""Run when Chat Model starts running."""def on_llm_new_token(self, token: str, **kwargs: Any) -> Any:"""Run on new LLM token. Only available when streaming is enabled."""def on_llm_end(self, response: LLMResult, **kwargs: Any) -> Any:"""Run when LLM ends running."""def on_llm_error(self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any) -> Any:"""Run when LLM errors."""def on_chain_start(self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) -> Any:"""Run when chain starts running."""def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> Any:"""Run when chain ends running."""def on_chain_error(self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any) -> Any:"""Run when chain errors."""def on_tool_start(self, serialized: Dict[str, Any], input_str: str, **kwargs: Any) -> Any:"""Run when tool starts running."""def on_tool_end(self, output: str, **kwargs: Any) -> Any:"""Run when tool ends running."""def on_tool_error(self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any) -> Any:"""Run when tool errors."""def on_text(self, text: str, **kwargs: Any) -> Any:"""Run on arbitrary text."""def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:"""Run on agent action."""def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> Any:"""Run on agent end."""

1. 最常用的Callback:StdOutCallbackHandler

StdOutCallbackHandler将所有事件的日志作为标准输出,打印到终端中。

注意: 当verbose参数设置为true时, StdOutCallbackHandler是被默认启用的,也就是你看到的它将运行过程的日志全部打印到了终端窗口中。

上示例:

from langchain.callbacks import StdOutCallbackHandler
from langchain.chains import LLMChain
from langchain_openai import OpenAI
from langchain.prompts import PromptTemplatehandler = StdOutCallbackHandler()
llm = OpenAI()
prompt = PromptTemplate.from_template("1 + {number} = ")# Constructor callback: First, let's explicitly set the StdOutCallbackHandler when initializing our chain
chain = LLMChain(llm=llm, prompt=prompt, callbacks=[handler])
chain.invoke({"number":2})# Use verbose flag: Then, let's use the `verbose` flag to achieve the same result
chain = LLMChain(llm=llm, prompt=prompt, verbose=True)
chain.invoke({"number":2})# Request callbacks: Finally, let's use the request `callbacks` to achieve the same result
chain = LLMChain(llm=llm, prompt=prompt)
chain.invoke({"number":2}, {"callbacks":[handler]})

输出:

在这里插入图片描述

对代码和运行结果的解释:

从运行结果可以看出,三次输出的结果相同。再看代码,用三种方式实现了StdOutCallbackHandler的设置。

  • 第一种:chain = LLMChain(llm=llm, prompt=prompt, callbacks=[handler]),chain中直接在callbacks中将callback handler传入
  • 第二种:使用verbose=True,即使不显式声明callbacks,它也使用StdOutCallbackHandler
  • 第三种:chain.invoke({"number":2}, {"callbacks":[handler]}),在invoke时传入callbacks

2. 各种类型的CallBack实践

2.1 通用 callback:BaseCallbackHandler

实现一个自己的Callback handler,继承自BaseCallbackHandler,然后重写自己需要的回调函数即可。

from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import HumanMessage
from langchain_openai import ChatOpenAIclass MyCustomHandler(BaseCallbackHandler):def on_llm_new_token(self, token: str, **kwargs) -> None:print(f"My custom handler, token: {token}")# To enable streaming, we pass in `streaming=True` to the ChatModel constructor
# Additionally, we pass in a list with our custom handler
chat = ChatOpenAI(max_tokens=25, streaming=True, callbacks=[MyCustomHandler()])chat([HumanMessage(content="Tell me a joke")])

运行结果:

在这里插入图片描述

2.2 异步 CallBack:AsyncCallbackHandler

有时候我们可能在CallBack内做大量的数据处理,可能比较耗时,如果使用通用 CallBack,会阻塞主线程运行,这时候异步 CallBack就比较有用了。

实现一个自己的Callback handler,继承自AsyncCallbackHandler,然后重写自己需要的回调函数即可。

class MyCustomAsyncHandler(AsyncCallbackHandler):"""Async callback handler that can be used to handle callbacks from langchain."""...... 重写相关回调函数 ......

2.3 写日志 / 日志文件: FileCallbackHandler

开发项目过程中,写日志是重要的调试手段之一。正式的项目中,我们不能总是将日志输出到终端中,这样无法传递和保存。

from langchain.callbacks import FileCallbackHandler
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_openai import OpenAIlogfile = "output.log"handler = FileCallbackHandler(logfile)llm = OpenAI()
prompt = PromptTemplate.from_template("1 + {number} = ")# this chain will both print to stdout (because verbose=True) and write to 'output.log'
# if verbose=False, the FileCallbackHandler will still write to 'output.log'
chain = LLMChain(llm=llm, prompt=prompt, callbacks=[handler], verbose=True)
answer = chain.run(number=2)

运行结果:

在这里插入图片描述

题外话:上面的log文件打开后有点乱码,可以用下面方法解析展示出来:

pip install --upgrade ansi2html
pip install ipython
from ansi2html import Ansi2HTMLConverter
from IPython.display import HTML, displaywith open("output.log", "r") as f:content = f.read()conv = Ansi2HTMLConverter()
html = conv.convert(content, full=True)display(HTML(html))

2.4 Token计数:get_openai_callback

Token就是Money,所以知道你的程序运行中使用了多少Token也是非常重要的。通过get_openai_callback来获取token消耗。

from langchain.callbacks import get_openai_callback
from langchain_openai import OpenAIllm = OpenAI(temperature=0)
with get_openai_callback() as cb:llm("What is the square root of 4?")total_tokens = cb.total_tokens
print("total_tokens: ", total_tokens)## 输出结果:total_tokens:  20

3. 总结

本文我们学习了LangChain的Callbacks模块,实践了各种 CallBack 的用法,知道了怎么利用LangChain进行写日志文件、Token计数等。这对于我们debug程序和监控程序的各个阶段非常重要。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是同学小张
  • 欢迎 点赞 + 关注 👏,促使我持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏
  • 踩坑不易,感谢关注和围观

本站文章一览:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/465816.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

代码随想录算法训练营第二九天 | 递增子序列、排列

目录 递增子序列全排列全排列 II LeetCode 491.递增子序列 LeetCode 46.全排列 LeetCode 47.全排列 II 递增子序列 不能使用之前的去重逻辑! 同一父节点下的同层上使用过的元素就不能再使用了 题目要求递增子序列大小至少为2,终止条件要限定。 class…

Minecraft的红石教程之电梯

一.前言 我记得是上初中的时候,就看到了这类电梯。现在我在看现在这类电梯的相关视频,大多是盗用创意未能领会其中的红石运作规律,于是我就删繁就简写了这篇。 二.步骤 1.材料 粘性活塞,黏液块,红石,红…

免费数据恢复软件哪个好?适用于 Windows的顶级免费数据恢复软件推荐

终于要说到Windows 11了,有太多令人惊叹的功能,让人跃跃欲试。但是,在升级到 Windows 11 或使用 Windows 11 时,人们可能会因计算机问题而导致文件被删除或丢失。这就是为什么需要 Windows 11 的免费文件恢复的原因。这是适用于 W…

依赖注入的艺术:编写可扩展 JavaScript 代码的秘密

1. 依赖注入 在 JavaScript 中,依赖注入(Dependency Injection,简称 DI)是一种软件设计模式,通过这种模式,可以减少代码模块之间的紧耦合。依赖注入允许开发者将模块的依赖关系从模块的内部转移到外部&…

SQLyog安装配置(注册码)连接MySQL

下载资源 博主给你打包好了安装包,在网盘里,只有几Mb,防止你下载到钓鱼软件 快说谢谢博主(然后心甘情愿的点个赞~😊) SQLyog.zip 安装流程 ①下载好压缩包后并解压 ②打开文件夹,双击安装包 ③…

案例:CentOS8 在 MySQL8.0 实现半同步复制

异步复制 MySQL 默认的复制即是异步的,主库在执行完客户端提交的事务后会立即将结果返给给客户端,并不关心从库是否已经接收并处理,这样就会有一个问题,主节点如果 crash 掉了,此时主节点上已经提交的事务可能并没有传…

【C++】函数指针 ③ ( 函数指针语法 | 函数名直接调用函数 | 定义函数指针变量 | 使用 typedef 定义函数类型 | 使用 typedef 定义函数指针类型 )

文章目录 一、函数指针语法1、函数名直接调用函数2、定义函数指针变量3、使用 typedef 定义函数类型4、使用 typedef 定义函数指针类型 二、完整代码示例 一、函数指针语法 1、函数名直接调用函数 定义一个函数 , 如下 函数的类型是 int(int, int) ; int add(int x, int y) {p…

【必看】Onlyfans如何使用搜索功能?Onlyfans如何搜索博主?如何在OnlyFans搜索HongkongDoll

1. 什么是Onlyfans OnlyFans是一种内容订阅服务平台,它成立于2016年。 它允许内容创作者在平台上面分享自己的创作,如图片、视频等等,用户需要支付订阅费用才能查看创作者的内容。此外,用户还可以通过打赏的方式来让创作者为自己…

一键打造属于自己漏扫系统

0x01 工具介绍 本系统是对Web中间件和Web框架进行自动化渗透的一个系统,根据扫描选项去自动化收集资产,然后进行POC扫描,POC扫描时会根据指纹选择POC插件去扫描,POC插件扫描用异步方式扫描.前端采用vue技术,后端采用python fastapi。 0x02 安装与使用 1、Docker部署环境 编译…

深入浅出CChart 每日一课——红花当然配绿叶,CChart辅助图形绘制

各位同学,好久不见,我可想死你们了!!!咦,那位不是巩叔吗?不好意思,侵权了,请多担待_。 前面的课程呢,拓展的内容比较多,最近笨笨想聚焦在CChart本…

【go语言】一个简单HTTP服务的例子

一、Go语言安装 Go语言(又称Golang)的安装过程相对简单,下面是在不同操作系统上安装Go语言的步骤: 在Windows上安装Go语言: 访问Go语言的官方网站(golang.org)或者使用国内镜像站点&#xff0…

数据结构:并查集讲解

并查集 1.并查集原理2.并查集实现3.并查集应用4.并查集的路径压缩 1.并查集原理 在一些应用问题中,需要将n个不同的元素划分成一些不相交的集合。开始时,每个元素自成一个单元素集合,然后按一定的规律将归于同一组元素的集合合并。在此过程中…