回归预测模型:MATLAB岭回归和Lasso回归

1. 岭回归和Lasso回归的基本原理

1.1 岭回归:

岭回归(Ridge Regression) 是一种用于共线性数据分析的技术。共线性指的是自变量之间存在高度相关关系。岭回归通过在损失函数中添加一个L2正则项( λ ∑ j = 1 n β j 2 \lambda \sum_{j=1}^{n} \beta_j^2 λj=1nβj2)来减小回归系数的大小,从而控制模型的复杂度和防止过拟合。这里的 λ \lambda λ是正则化强度参数。

1.2 Lasso回归:

Lasso回归(Least Absolute Shrinkage and Selection Operator) 通过在损失函数中添加一个L1正则项( λ ∑ j = 1 n ∣ β j ∣ \lambda \sum_{j=1}^{n} |\beta_j| λj=1nβj)来进行变量选择和复杂度调控。Lasso回归倾向于产生一些精确为零的系数,从而实现了变量的自动选择,有助于提高模型的解释能力。

2. MATLAB中岭回归和Lasso回归的实现

岭回归实现:

MATLAB使用ridge函数实现岭回归。此函数要求自变量矩阵进行中心化和标准化。

Lasso回归实现:

MATLAB通过lasso函数实现Lasso回归,提供了一个方便的接口来执行变量选择和正则化。

3. 实例分析

假设我们有一组数据,包括多个自变量(X1, X2, …, Xn)和一个因变量(Y),我们将使用岭回归和Lasso回归来建模,并比较结果。

3.1 岭回归分析代码
clc,clear
% 设置随机数种子以保证结果的可复现性
rng(0);% 生成模拟数据
n_samples = 100;
n_features = 5;
X = randn(n_samples, n_features);
true_coeffs = [3.5; -2; 0; 4; -1]; % 真实系数
Y = X * true_coeffs + randn(n_samples, 1) * 1.5; % 添加噪声% 继续进行岭回归分析
lambda = 0.1:0.1:10; % 设置一系列的正则化强度参数
ridgeCoeffs = ridge(Y, X, lambda, 0)% 绘制岭回归系数随lambda变化的图
figure;
plot(lambda, ridgeCoeffs(2:end, :)); % 从第二行开始绘制,因为ridge函数的第一行是截距项
xlabel('Lambda');
ylabel('Coefficients');
title('Ridge Regression Coefficients vs. Lambda');
legend(arrayfun(@(n) sprintf('Coeff %d', n), 1:n_features, 'UniformOutput', false), 'Location', 'Best');
grid on;
3.2 Lasso回归分析代码
clc,clear
% 设置随机数种子以保证结果的可复现性
rng(0);% 生成模拟数据
n_samples = 100;
n_features = 5;
X = randn(n_samples, n_features);
true_coeffs = [3.5; -2; 0; 4; -1]; % 真实系数
Y = X * true_coeffs + randn(n_samples, 1) * 1.5; % 添加噪声% Lasso回归分析
[B, FitInfo] = lasso(X, Y, 'CV', 10); % 进行Lasso回归,并使用10折交叉验证% 选取最佳Lambda值对应的系数
idxLambda1SE = FitInfo.Index1SE;
coef = B(:, idxLambda1SE);%最佳Lambda值对应的系数
coef0 = FitInfo.Intercept(idxLambda1SE);%最佳Lambda值对应的截距项
disp('最佳Lambda值对应的系数:')
disp(coef)
disp('最佳Lambda值对应的截距项:')
disp(coef0)
lassoPlot(B, FitInfo, 'PlotType', 'Lambda', 'XScale', 'log');%绘制系数路径
lassoPlot(B, FitInfo, 'PlotType', 'CV');%绘制交叉验证误差

4. 求解结果

4.1 岭回归:


绘制每个系数随 λ \lambda λ变化的图:

4.2 Lasso回归:

5. 结果解释和应用

  • 岭回归:通过调整 λ \lambda λ值,可以观察不同正则化强度对模型系数的影响。较大的 λ \lambda λ值会使系数更小,有助于减少过拟合。
  • Lasso回归:Lasso回归结果可以帮助我们识别哪些变量对预测最重要,因为不重要的变量系数会被压缩到0。

6. 结论

岭回归和Lasso回归都是处理高维数据和防止过拟合的有效方法。岭回归通过L2正则化减小系数值,而Lasso回归既可以通过L1正则化减小系数值,又可以实现变量选择。在实际应用中,选择哪一种方法取决于具体问题和数据集的特点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/466424.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于JAVA的软件学院思政案例库系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统管理员2.2 普通教师 三、系统展示四、核心代码4.1 查询思政案例4.2 审核思政案例4.3 查询思政课程4.4 思政案例点赞4.5 新增思政案例评语 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpringBootMySQL的软件学…

【Linux】基础命令 第二篇

目录 echo 输出重定向:(本质都是写入) 输入重定向cat more 指令 && less指令 head && tail && 管道初步使用 grep:行文本过滤工具(文本按行搜索) date:获取时间 date 命令用于 显示 或 设置系统的…

MATLAB Coder从入门到放弃

一、MATLAB Coder入门 1 MATLAB Coder是什么 从 MATLAB 代码生成 C 和 C 代码 MATLAB Coder™ 可从 MATLAB 代码生成适用于各种硬件平台(从桌面计算机系统到嵌入式硬件)的 C 和 C 代码。它支持大多数 MATLAB 语言和广泛的工具箱。您可以将生成的代码作…

4核8g服务器能支持多少人访问?2024新版测评

腾讯云轻量4核8G12M轻量应用服务器支持多少人同时在线?通用型-4核8G-180G-2000G,2000GB月流量,系统盘为180GB SSD盘,12M公网带宽,下载速度峰值为1536KB/s,即1.5M/秒,假设网站内页平均大小为60KB…

IM聊天系统为什么需要做消息幂等?如何使用Redis以及Lua脚本做消息幂等【第12期】

0前言 消息收发模型 第一张图是一个时序图,第二张图是一个标清楚步骤的流程图,更加清晰。消息的插入环节主要在2步。save部分。主要也是对这个部分就行消息幂等的操作。 前情提要:使用Redis发布 token 以及lua脚本来共同完成消息的幂等 目…

如何进行前端自动化测试

如何进行前端自动化测试使用Puppeteer进行前端自动化测试 使用Puppeteer进行前端自动化测试步骤使用示例 如何进行前端自动化测试 前端自动化测试是确保前端应用程序在各种情况下都能正常工作的关键。以下是进行前端自动化测试的一般步骤: 选择适合的测试框架 选…

2024.02.12

使用STM32Cubemx创建一个工程并且给出每一步的含 选择芯片创建工程 开启调试功能 配置时钟 配置时间树 工程管理 配置仿真器

STM32 USART串口通信

目录 USART串口 串口发送 串口发送接收 串口收发HEX数据包 串口收发文本数据包 USART串口 串口发送 Serial.c #include "stm32f10x.h" // Device header #include "stdio.h" #include "stdarg.h"/*** brief 初始化串口以…

车载诊断协议DoIP系列 —— OSI模型DoIP参考

车载诊断协议DoIP系列 —— OSI模型DoIP参考 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师(Wechat:gongkenan2013)。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 本就是小人物,输了就是输了,不要在意别人怎么看自己。江湖一碗茶,喝完再…

蓝桥杯-X图形

问题描述 给定一个字母矩阵。一个 X 图形由中心点和由中心点向四个 45度斜线方向引出的直线段组成,四条线段的长度相同,而且四条线段上的字母和中心点的字母相同。 一个 X 图形可以使用三个整数 r,c,L 来描述,其中 r,c 表示中心点位于第 r 行…

Python||数据分析之pyecharts 绘图(词云、气泡)

1. echarts 和 Pyecharts 简介 1.1echarts 简介: • echarts 是一个使用 JavaScript 实现的开源可视化库,涵盖各行业图表,满足各种需求。 • echarts 遵循 Apache-2.0 开源协议,免费商用。 • ECharts 最初由百度团队开源,并于 2018 年初捐赠给 Apache 基金会,成为 AS…

nodejs学习计划--(十)会话控制及https补充

一、会话控制 1.介绍 所谓会话控制就是 对会话进行控制 HTTP 是一种无状态的协议,它没有办法区分多次的请求是否来自于同一个客户端, 无法区分用户 而产品中又大量存在的这样的需求,所以我们需要通过 会话控制 来解决该问题 常见的会话控制…