C#,数值计算,矩阵的行列式(Determinant)、伴随矩阵(Adjoint)与逆矩阵(Inverse)的算法与源代码

本文发布矩阵(Matrix)的一些初级算法。

一、矩阵的行列式(Determinant)

矩阵行列式是指矩阵的全部元素构成的行列式,设A=(a)是数域P上的一个n阶矩阵,则所有A=(a)中的元素组成的行列式称为矩阵A的行列式,记为|A|或det(A)。若A,B是数域P上的两个n阶矩阵,k是P中的任一个数,则|AB|=|A||B|,|kA|=kⁿ|A|,|A*|=|A|,其中A*是A的伴随矩阵;若A是可逆矩阵,则|A|=|A|。
 

/// <summary>
/// 计算 A[p,q] 位于 [,]temp 的块辅因子
/// </summary>
/// <param name="matrix"></param>
/// <param name="temp"></param>
/// <param name="p"></param>
/// <param name="q"></param>
/// <param name="n"></param>
private static void BlockCofactor(double[,] matrix, ref double[,] temp, int p, int q, int n)
{
    int i = 0;
    int j = 0;

    for (int row = 0; row < n; row++)
    {
        for (int col = 0; col < n; col++)
        {
            if (row != p && col != q)
            {
                temp[i, j++] = matrix[row, col];
                if (j == (n - 1))
                {
                    j = 0;
                    i++;
                }
            }
        }
    }
}

/// <summary>
/// 求矩阵行列式(递归算法)
/// </summary>
/// <param name="N"></param>
/// <param name="matrix"></param>
/// <param name="n"></param>
/// <returns></returns>
public static double Determinant(int N, double[,] matrix, int n)
{
    if (n == 1)
    {
        return matrix[0, 0];
    }

    double D = 0.0;
    double[,] temp = new double[N, N];
    int sign = 1;
    for (int f = 0; f < n; f++)
    {
        BlockCofactor(matrix, ref temp, 0, f, n);
        D += sign * matrix[0, f] * Determinant(N, temp, n - 1);
        sign = -sign;
    }
    return D;
}
 

/// <summary>
/// 计算 A[p,q] 位于 [,]temp 的块辅因子
/// </summary>
/// <param name="matrix"></param>
/// <param name="temp"></param>
/// <param name="p"></param>
/// <param name="q"></param>
/// <param name="n"></param>
private static void BlockCofactor(double[,] matrix, ref double[,] temp, int p, int q, int n)
{int i = 0;int j = 0;for (int row = 0; row < n; row++){for (int col = 0; col < n; col++){if (row != p && col != q){temp[i, j++] = matrix[row, col];if (j == (n - 1)){j = 0;i++;}}}}
}/// <summary>
/// 求矩阵行列式(递归算法)
/// </summary>
/// <param name="N"></param>
/// <param name="matrix"></param>
/// <param name="n"></param>
/// <returns></returns>
public static double Determinant(int N, double[,] matrix, int n)
{if (n == 1){return matrix[0, 0];}double D = 0.0;double[,] temp = new double[N, N];int sign = 1;for (int f = 0; f < n; f++){BlockCofactor(matrix, ref temp, 0, f, n);D += sign * matrix[0, f] * Determinant(N, temp, n - 1);sign = -sign;}return D;
}

二、矩阵的伴随矩阵(Adjoint Matrix)

一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对多维矩阵也存在这个规律。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。
 

/// <summary>
/// 伴随矩阵
/// </summary>
/// <param name="A"></param>
/// <param name="adj"></param>
public static void Adjoint(double[,] matrix, out double[,] adjoint)
{
    int N = matrix.GetLength(0);
    adjoint = new double[N, N];

    if (N == 1)
    {
        adjoint[0, 0] = 1.0;
        return;
    }

    int sign = 1;
    double[,] temp = new double[N, N];
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            BlockCofactor(matrix, ref temp, i, j, N);
            sign = ((i + j) % 2 == 0) ? 1 : -1;
            adjoint[j, i] = (sign) * (Determinant(N, temp, N - 1));
        }
    }
}

/// <summary>
/// 伴随矩阵
/// </summary>
/// <param name="A"></param>
/// <param name="adj"></param>
public static void Adjoint(double[,] matrix, out double[,] adjoint)
{int N = matrix.GetLength(0);adjoint = new double[N, N];if (N == 1){adjoint[0, 0] = 1.0;return;}int sign = 1;double[,] temp = new double[N, N];for (int i = 0; i < N; i++){for (int j = 0; j < N; j++){BlockCofactor(matrix, ref temp, i, j, N);sign = ((i + j) % 2 == 0) ? 1 : -1;adjoint[j, i] = (sign) * (Determinant(N, temp, N - 1));}}
}

三、矩阵的逆矩阵(Inverse Matrix)

设A是一个n阶矩阵,若存在另一个n阶矩阵B,使得: AB=BA=E ,则称方阵A可逆,并称方阵B是A的逆矩阵。矩阵求逆,即求矩阵的逆矩阵。矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷。逆矩阵又是矩阵理论的很重要的内容,逆矩阵的求法自然也就成为线性代数研究的主要内容之一。

/// <summary>
/// 矩阵求逆
/// </summary>
/// <param name="A"></param>
/// <param name="inverse"></param>
/// <returns></returns>
public static bool Inverse(double[,] matrix, out double[,] inverse)
{
    int N = matrix.GetLength(0);
    inverse = new double[N, N];

    double det = Determinant(N, matrix, N);
    if (det == 0)
    {
        return false;
    }

    Adjoint(matrix, out double[,] adj);

    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            inverse[i, j] = adj[i, j] / (double)det;
        }
    }
    return true;
}
 

/// <summary>
/// 矩阵求逆
/// </summary>
/// <param name="A"></param>
/// <param name="inverse"></param>
/// <returns></returns>
public static bool Inverse(double[,] matrix, out double[,] inverse)
{int N = matrix.GetLength(0);inverse = new double[N, N];double det = Determinant(N, matrix, N);if (det == 0){return false;}Adjoint(matrix, out double[,] adj);for (int i = 0; i < N; i++){for (int j = 0; j < N; j++){inverse[i, j] = adj[i, j] / (double)det;}}return true;
}

演算代码:

private void button1_Click(object sender, EventArgs e)
{
    double[,] A = { 
        {5, -2, 2, 7},
        {1, 0, 0, 3},
        {-3, 1, 5, 0},
        {3, -1, -9, 4}
    };

    double d = Algorithm_Gallery.Determinant(4, A, 4);

    StringBuilder sb = new StringBuilder();
    sb.Append(Welcome());
    sb.AppendLine("1、<b>原始矩阵</b>(Source Matrix):<br>");
    sb.Append(Algorithm_Gallery.ToHtml(A));
    sb.AppendLine("行列式(Determinant)=" + d + "<br>");
    
    Algorithm_Gallery.Adjoint(A, out double[,] adj);
    sb.AppendLine("<br>2、<b>伴随矩阵</b>(Adjoint Matrix):<br>");
    sb.Append(Algorithm_Gallery.ToHtml(adj));
    
    Algorithm_Gallery.Inverse(A, out double[,] inv);
    sb.AppendLine("<br>3、<b>逆矩阵</b>(Inverse Matrix):<br>");
    sb.Append(Algorithm_Gallery.ToHtml(inv));
    sb.Append(Bye());
    webBrowser1.DocumentText = sb.ToString();
}

private void button1_Click(object sender, EventArgs e)
{double[,] A = { {5, -2, 2, 7},{1, 0, 0, 3},{-3, 1, 5, 0},{3, -1, -9, 4}};double d = Algorithm_Gallery.Determinant(4, A, 4);StringBuilder sb = new StringBuilder();sb.Append(Welcome());sb.AppendLine("1、<b>原始矩阵</b>(Source Matrix):<br>");sb.Append(Algorithm_Gallery.ToHtml(A));sb.AppendLine("行列式(Determinant)=" + d + "<br>");Algorithm_Gallery.Adjoint(A, out double[,] adj);sb.AppendLine("<br>2、<b>伴随矩阵</b>(Adjoint Matrix):<br>");sb.Append(Algorithm_Gallery.ToHtml(adj));Algorithm_Gallery.Inverse(A, out double[,] inv);sb.AppendLine("<br>3、<b>逆矩阵</b>(Inverse Matrix):<br>");sb.Append(Algorithm_Gallery.ToHtml(inv));sb.Append(Bye());webBrowser1.DocumentText = sb.ToString();
}

 打印矩阵的代码:


public static string ToHtml(double[,] y)
{
    int m = y.GetLength(0);
    int n = y.GetLength(1);
    StringBuilder sb = new StringBuilder();
    sb.AppendLine("<style>");
    sb.AppendLine("td { padding:5px;text-align:right; }");
    sb.AppendLine("</style>");
    sb.AppendLine("<table width='100%' border=1 bordercolor='#999999' style='border-collapse:collapse;'>");
    for (int i = 0; i < m; i++)
    {
        sb.AppendLine("<tr>");
        for (int j = 0; j < n; j++)
        {
            sb.AppendLine("<td>" + String.Format("{0:F8}", y[i, j]) + "</td>");
        }
        sb.AppendLine("</tr>");
    }
    sb.AppendLine("</table>");
    return sb.ToString();
}
 

————————————————————————————————

POWER BY  TRUFFER.CN 50018.COM 315SOFT.COM

public static string ToHtml(double[,] y)
{int m = y.GetLength(0);int n = y.GetLength(1);StringBuilder sb = new StringBuilder();sb.AppendLine("<style>");sb.AppendLine("td { padding:5px;text-align:right; }");sb.AppendLine("</style>");sb.AppendLine("<table width='100%' border=1 bordercolor='#999999' style='border-collapse:collapse;'>");for (int i = 0; i < m; i++){sb.AppendLine("<tr>");for (int j = 0; j < n; j++){sb.AppendLine("<td>" + String.Format("{0:F8}", y[i, j]) + "</td>");}sb.AppendLine("</tr>");}sb.AppendLine("</table>");return sb.ToString();
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/466960.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024春晚纸牌魔术原理----环形链表的约瑟夫问题

一.题目及剖析 https://www.nowcoder.com/practice/41c399fdb6004b31a6cbb047c641ed8a?tabnote 这道题涉及到数学原理,有一般公式,但我们先不用公式,看看如何用链表模拟出这一过程 二.思路引入 思路很简单,就试创建一个单向循环链表,然后模拟报数,删去对应的节点 三.代码引…

【SpringBoot】Validator组件+自定义约束注解实现手机号码校验和密码格式限制

&#x1f3e1;浩泽学编程&#xff1a;个人主页 &#x1f525; 推荐专栏&#xff1a;《深入浅出SpringBoot》《java对AI的调用开发》 《RabbitMQ》《Spring》《SpringMVC》 &#x1f6f8;学无止境&#xff0c;不骄不躁&#xff0c;知行合一 文章目录 前言一、Cons…

超越‘赞’按钮:Facebook情感智能的突破之路

社交媒体已经成为了我们生活中不可或缺的一部分。我们通过它与朋友、家人和同事保持联系&#xff0c;分享快乐和悲伤&#xff0c;表达意见和观点。然而&#xff0c;长期以来&#xff0c;我们只能通过简单的“赞”按钮来回应他人的帖子。这种单一的反馈方式无法真正展现我们复杂…

【Tauri】(2):使用Tauri应用开发,使用开源的Chatgpt-web应用做前端,使用rust 的candle做后端,本地运行小模型桌面应用

视频演示地址 https://www.bilibili.com/video/BV17j421X7Zc/ 【Tauri】&#xff08;2&#xff09;&#xff1a;使用Tauri应用开发&#xff0c;使用开源的Chatgpt-web应用做前端&#xff0c;使用rust 的candle做后端&#xff0c;本地运行小模型桌面应用 1&#xff0c;做一个免…

编写Makefile

现在我们将创建一个程序&#xff0c;该程序能够读取次位码文件并打印其中定义的函数名称&#xff0c;以及它们的基本块数&#xff0c;从而显示LLVM库的易用性 什么是Makefile&#xff1f; C语言中&#xff0c;我们使用visual studio开发软件时候&#xff0c;写程序开始时候都…

复旦TravelPlanner让大语言模型挑战旅程规划

引言&#xff1a;探索语言智能的新疆界——旅行规划 在人工智能的发展历程中&#xff0c;规划一直是核心追求之一。然而&#xff0c;由于缺乏人类水平规划所需的多种认知基础&#xff0c;早期的AI代理主要集中在受限的环境中。随着大语言模型&#xff08;LLMs&#xff09;的出…

vue3-应用规模化-路由和状态

客户端 vs. 服务端路由 服务端路由指的是服务器根据用户访问的 URL 路径返回不同的响应结果。当我们在一个传统的服务端渲染的 web 应用中点击一个链接时&#xff0c;浏览器会从服务端获得全新的 HTML&#xff0c;然后重新加载整个页面。 然而&#xff0c;在单页面应用中&…

python伯努利多项式

文章目录 伯努利数和多项式sympy实现 伯努利数是一种在数学、物理和工程中广泛应用的特殊数列&#xff0c;以瑞士数学家雅各布伯努利&#xff08;Jacob Bernoulli&#xff09;的名字命名&#xff0c;并在许多领域中发挥重要作用。在数学中&#xff0c;它们与斐波那契数列、卡塔…

幻兽帕鲁服务器操作系统选择Windows还是Linux?

各有各的优势&#xff0c;幻兽帕鲁Windows&#xff1a;适合新手&#xff0c;快速上手。 而幻兽帕鲁Linux&#xff08;Ubuntu&#xff09;&#xff1a;适合有一定技术基础的小伙伴。 推荐选择Windows系统&#xff0c;用起来更加简单&#xff0c;操作方便。如下图&#xff1a; …

【51单片机】DS18B20(江科大)

一、DS18B20温度传感器 1.DS18B20介绍 DS18B20是一种常见的数字温度传感器,其控制命令和数据都是以数字信号的方式输入输出,相比较于模拟温度传感器,具有功能强大、硬件简单、易扩展、抗干扰性强等特点 测温范围 :- 55℃到125℃ 通信接口:1-Wire(单总线) 其它特征:可形成…

Java学习笔记(三)

目录 一、字符类型 二、布尔类型 三、基本数据类型转换 3.1 自动类型转换 3.2 强制类型转换 3.3 基本数据类型和String类型的转换 一、字符类型 字符类型可以表示单个字符&#xff0c;字符类型是char。 多个字符我们用字符串String。 字符和码值的对应关系是通过字符编…

如何在PDF 文件中删除页面?

查看不同的工具以及解释如何在 Windows、Android、macOS 和 iOS 上从 PDF 删除页面的步骤&#xff1a; PDF 是最难处理的文件格式之一。曾经有一段时间&#xff0c;除了阅读之外&#xff0c;无法用 PDF 做任何事情。但是今天&#xff0c;有许多应用程序和工具可以让您用它们做…