【C语言】实现双向链表


目录

(一)头文件

(二) 功能实现

(1)初始化

 (2)打印链表

(3) 头插与头删

(4)尾插与尾删

(5)指定位置之后插入

(6)删除指定位置的数据

(7)链表的销毁


 

正文开始:

        在实际应用中,常用的双向链表是双向带头循环链表,本文考虑到实际应用,目的也是实现双向带头循环链表。

(一)头文件

        命名"List.h"

        本文不加解释的给出头文件,按照头文件来实现双向链表的基本功能:包括打印链表,链表的初始化,头插与头删,尾插与尾删,在指定位置之后插入数据,删除指定位置的数据,链表的销毁等共九个功能。

#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
//链表的数据类型
typedef int LTtype;
//双向链表的节点
typedef struct ListNode
{LTtype data;struct ListNode* prev;struct ListNode* next;
}LTNode;//双向链表带有哨兵位,插入数据之前先插入哨兵位
//初始化》传入头节点
void LTInit(LTNode** pphead);//初始化2>返回头节点
LTNode* LtInit0();//销毁链表
void LTDestory(LTNode** pphead);//尾插
void LTtail_push(LTNode* phead,LTtype x);//头插
//是在头节点之后插入,在头节点之前插入等价于尾插
void LThead_push(LTNode* phead,LTtype x);//打印便于调试
void Print(LTNode* phead);//头删
void LTpophead(LTNode* phead);//尾删
void LTpoptail(LTNode* phead);//查找
//为了找到pos位置
LTNode* LTfind(LTNode* phead, LTtype x);//在pos之后插入数据
void LTinsert(LTNode* pos, LTtype x);//删除pos处的数据
void LTerase(LTNode* pos);

(二) 功能实现

        带头相对于不带头有诸多优势:

带头与不带头链表:

        带头链表是指在链表的开头增加一个额外的节点,该节点不存储具体的数据,仅用于辅助操作链表。带头链表的带头节点可以简化链表的操作,提高代码的可读性和可维护性。

        意义:

        带头节点可以避免链表为空的特殊情况处理。在没有带头节点的链表中,如果链表为空,添加、删除等操作都需要额外的处理逻辑。而带头节点的链表中,带头节点一直存在,无论链表是否为空,操作逻辑都是一致的,可以减少代码的复杂性。

        局限:

        造成额外的空间浪费。

(1)初始化

         初始化有两种方法,具体实现如下:

传址初始化

        初始化传递链表的地址(二级指针【通过传址,将形参与实参建立联系】),初始化要插入头指针哨兵位(不保存有效的数据),便于简化代码逻辑。

//双向链表带有哨兵位,插入数据之前先插入哨兵位
void LTInit(LTNode** pphead)
{*pphead = (LTNode*)malloc(sizeof(LTNode));if (*pphead == NULL){perror("malloc");exit(1);}(*pphead)->data = -1;(*pphead)->next = (*pphead)->prev = *pphead;
}

接受返回值初始化

        在函数内申请头节点,最后返回到主函数内:

//初始化2>返回头节点
LTNode* LtInit0()
{LTNode* phead = (LTNode*)malloc(sizeof(LTNode));if (phead == NULL){perror("malloc");exit(1);}phead->data = -1;phead->next = phead->prev = phead;return phead;
}

 (2)打印链表

        以便于调试,理解代码;

        与打印单链表一样,不同的是:while的跳出条件是 pcur != phead;


//打印链表
void Print(LTNode* phead)
{assert(phead);LTNode* pcur = phead->next;while (pcur != phead){printf("%d->", pcur->data);pcur = pcur->next;}printf("\n");
}

(3) 头插与头删

        插入操作需要申请新节点:


//获取新节点
LTNode* LTbuynewnode(LTtype x)
{LTNode* newnode = (LTNode*)malloc(sizeof(LTNode));if (newnode == NULL){perror("malloc");exit(1);}newnode->data = x;newnode->next = newnode->prev = NULL;return newnode;
}

 

        头插与头删

         头插,是在头节点之后插入,在头节点之前插入等价于尾插;

         先对新节点进行操作,因为新节点与原节点没有联系,不会因为对指针进行操作而丢失节点,造成数据丢失和内存泄漏;

        我们可以直接得到phead,因此先让phead的下一个节点的前驱指针指向newnode,再改变phead的next指针;(如果反过来,先改变phead的next指向newnode,此时newnode后面的节点就找不到了。)


//头插,是在头节点之后插入,在头节点之前插入等价于尾插
void LThead_push(LTNode* phead, LTtype x)
{assert(phead);LTNode* newnode = LTbuynewnode(x);//先对新节点进行操作newnode->next = phead->next;newnode->prev = phead;phead->next->prev = newnode;phead->next = newnode;}

头删

        断言传过来的指针不为空,链表不为空,通过assert实现;

        通过创建del指针(要被删除的节点),保存旧头节点;

        通过创建next指针,保存旧头节点的next节点;

        这样命名后进行头删,逻辑清晰,不易出错;


//头删
void LTpophead(LTNode* phead)
{assert(phead);assert(phead->next != phead);LTNode* del = phead->next;//被删除的节点LTNode* next = del->next;//del的后置节点phead->next = next;next->prev = phead;free(del);del = NULL;
}

 

(4)尾插与尾删

尾插

        与头插的逻辑完全相同


//尾插
void LTtail_push(LTNode* phead, LTtype x)
{assert(phead);LTNode* newnode = LTbuynewnode(x);newnode->next = phead;newnode->prev = phead->prev;phead->prev->next = newnode;phead->prev = newnode;
}

尾删

        与头删的逻辑完全相同


//尾删
void LTpoptail(LTNode* phead)
{assert(phead);assert(phead->next != phead);LTNode* del = phead->prev;//被删除的节点LTNode* prev = del->prev;//del的前置节点prev->next = phead;phead->prev = prev;free(del);del = NULL;
}

 

(5)指定位置之后插入

查找

         查找数据值为x的节点,找到返回此节点,找不到返回NULL;


//查找
LTNode* LTfind(LTNode* phead,LTtype x)
{assert(phead);LTNode* pcur = phead->next;while (pcur != phead){if (pcur->data == x){return pcur;}pcur = pcur->next;}return NULL;
}

 

 在指定位置之后插入数据

        根据find找到的pos位置,申请新节点,插入到pos之后


//在pos位置之后插入数据
void LTinsert(LTNode* pos,LTtype x)
{assert(pos);LTNode* newnode = LTbuynewnode(x);newnode->next = pos->next;newnode->prev = pos;pos->next->prev = newnode;pos->next = newnode;
}

 

(6)删除指定位置的数据

         删除指定位置的数据,需要的指针有pos的前驱节点,pos节点。


//删除pos处的数据
void LTerase(LTNode* pos)
{assert(pos);LTNode* prev = pos->prev;LTNode* next = pos->next;prev->next = next;next->prev = prev;free(pos);pos = NULL;
}

 

(7)链表的销毁

        链表的销毁共有两种方法:

传址销毁


//销毁链表
void LTDestory(LTNode** pphead)
{assert(pphead);//哨兵位不为空assert(*pphead);LTNode* pcur = (*pphead)->next;while (pcur != *pphead){LTNode* next = pcur->next;free(pcur);pcur = next;}//释放哨兵位free(pphead);//此时可以改变哨兵位的pphead = NULL;}

 传值销毁

        一级指针phead传递的是值,不是phead的地址,所以在函数中改变phead并不会改变phead的实际值
        函数返回后,仍需要手动phead = NULL;


//推荐使用一级,为了保持接口的一致性
void LTDestory0(LTNode* phead)
{assert(phead);LTNode* pcur = phead->next;while (pcur != phead){LTNode* next = pcur->next;free(pcur);pcur = next;}free(phead);phead = NULL;//无效的置空,当做是习惯
}
//一级指针phead传递的是值,不是phead的地址,所以在函数中改变phead并不会改变phead的实际值
//函数返回后,仍需要手动phead = NULL;

 

完~

未经作者同意禁止转载 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/466973.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

产品交付双轮驱动思维模型下的思考的研发工具

一、产品交付双轮驱动思维模型 之前读过这样双轮驱动思维模型&#xff0c;其思维模型如下图所示&#xff0c;双轮驱动思维模型是一个产品价值交付模型&#xff0c;总的理念是以“真北业务价值”为导向&#xff0c;以“产品快速交付”为动力&#xff0c;将“业务价值”与“产品…

ZigBee学习——BDB

✨本博客参考了善学坊的教程&#xff0c;并总结了在实现过程中遇到的问题。 善学坊官网 文章目录 一、BDB简介二、BDB Commissioning Modes2.1 Network Steering2.2 Network Formation2.3 Finding and Binding&#xff08;F & B&#xff09;2.4 Touchlink 三、BDB Commissi…

【Web】Redis未授权访问漏洞学习笔记

目录 简介 靶机配置 Redis持久化 Redis动态修改配置 webshell 反弹shell Redis写入反弹shell任务 加固方案 简介 Redis&#xff08;Remote Dictionary Server 远程字典服务器&#xff09;是一个开源的内存数据库&#xff0c;也被称为数据结构服务器&#xff0c;它支持…

数据结构哈希表

这里个大家用数组来模拟哈希表 法一&#xff1a;拉链法 法二&#xff1a;开放寻址法 /** Project: 11_哈希表* File Created:Sunday, January 17th 2021, 2:11:23 pm* Author: Bug-Free* Problem:AcWing 840. 模拟散列表 拉链法*/ #include <cstring> #include <iostr…

Swift Combine 发布者订阅者操作者 从入门到精通二

Combine 系列 Swift Combine 从入门到精通一 1. Combine核心概念 你只需要了解几个核心概念&#xff0c;就能使用好 Combine&#xff0c;但理解它们非常重要。 这些概念中的每一个都通过通用协议反映在框架中&#xff0c;以将概念转化为预期的功能。 这些核心概念是&#x…

Peter算法小课堂—区间模型

Peter Pan来啦…… 最大不重叠区间数 二话不说&#xff0c;先来一道题 大家想想怎么贪心&#xff1f;我们可以将每一个美食摊位抽象成一个区间&#xff0c;区间左端点为开始排队时间&#xff0c;右端点为结束排队时间。其中&#xff0c;时间信息可以用数轴表示。 额……我们…

Linux第49步_移植ST公司的linux内核第1步_获取linux源码

已知ST公司的linux源码路径&#xff1a; /home/zgq/linux/atk-mp1/stm32mp1-openstlinux-5.4-dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-r0 1、创建“my_linux”目录 打开第1个终端 输入“ls回车” 输入“cd linux/回车”&#xff0c;切换…

分享87个jQuery特效,总有一款适合您

分享87个jQuery特效&#xff0c;总有一款适合您 87个jQuery特效下载链接&#xff1a;https://pan.baidu.com/s/1H9kH2qrL-AHFn3jDlNvTFw?pwd8888 提取码&#xff1a;8888 Python采集代码下载链接&#xff1a;采集代码.zip - 蓝奏云 学习知识费力气&#xff0c;收集整理…

C#,数值计算,矩阵的行列式(Determinant)、伴随矩阵(Adjoint)与逆矩阵(Inverse)的算法与源代码

本文发布矩阵&#xff08;Matrix&#xff09;的一些初级算法。 一、矩阵的行列式&#xff08;Determinant&#xff09; 矩阵行列式是指矩阵的全部元素构成的行列式&#xff0c;设A(a)是数域P上的一个n阶矩阵&#xff0c;则所有A(a)中的元素组成的行列式称为矩阵A的行列式&…

2024春晚纸牌魔术原理----环形链表的约瑟夫问题

一.题目及剖析 https://www.nowcoder.com/practice/41c399fdb6004b31a6cbb047c641ed8a?tabnote 这道题涉及到数学原理,有一般公式,但我们先不用公式,看看如何用链表模拟出这一过程 二.思路引入 思路很简单,就试创建一个单向循环链表,然后模拟报数,删去对应的节点 三.代码引…

【SpringBoot】Validator组件+自定义约束注解实现手机号码校验和密码格式限制

&#x1f3e1;浩泽学编程&#xff1a;个人主页 &#x1f525; 推荐专栏&#xff1a;《深入浅出SpringBoot》《java对AI的调用开发》 《RabbitMQ》《Spring》《SpringMVC》 &#x1f6f8;学无止境&#xff0c;不骄不躁&#xff0c;知行合一 文章目录 前言一、Cons…

超越‘赞’按钮:Facebook情感智能的突破之路

社交媒体已经成为了我们生活中不可或缺的一部分。我们通过它与朋友、家人和同事保持联系&#xff0c;分享快乐和悲伤&#xff0c;表达意见和观点。然而&#xff0c;长期以来&#xff0c;我们只能通过简单的“赞”按钮来回应他人的帖子。这种单一的反馈方式无法真正展现我们复杂…