向量搜索查询faiss、annoy

首先介绍annoy :
转发空间:https://download.csdn.net/blog/column/10872374/114665212

Annoy是高维空间求近似最近邻的一个开源库。

Annoy构建一棵二叉树,查询时间为O(logn)。

Annoy通过随机挑选两个点,并使用垂直于这个点的等距离超平面将集合划分为两部分。

如图所示,图中灰色线是连接两个点,超平面是加粗的黑线。按照这个方法在每个子集上迭代进行划分。
在这里插入图片描述

依此类推,直到每个集合最多剩余k个点,下图是一个k = 10 的情况。

在这里插入图片描述

在这里插入图片描述

n_trees在构建时提供,并影响构建时间和索引大小。 较大的值将给出更准确的结果,但更大的索引。

search_k在运行时提供,并影响搜索性能。 较大的值将给出更准确的结果,但将需要更长的时间返回。

代码实现:

pip install annoy == 1.17.0 -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn

from tqdm import tqdm
import pandas as pd
import time
import numpy as np
from annoy import AnnoyIndex
from sentence_transformers import SentenceTransformer, InputExample
from sentence_transformers import models, losses
from torch.utils.data import DataLoader
from sentence_transformers import SentenceTransformer, util
from sentence_transformers import SentenceTransformer, SentencesDataset, InputExample, evaluation, losses, models
from torch.utils.data import DataLoader
model = SentenceTransformer(r'327_6epoch_64batchdjwSaveModel/djwSaveModel')
emb1 = model.encode("美赞臣安婴儿A+亲舒婴儿奶粉1段850克0-12个月宝宝")
print(emb1.shape)
emb2 = model.encode("美赞臣亲舒一段领券满减")
emb3 = model.encode("真手表打火机带手电筒真车钥匙电子手表打火机充电防风送男友潮")
cos_sim = util.pytorch_cos_sim(emb1, emb2)
cos_sim1 = util.pytorch_cos_sim(emb3, emb2)
print("Cosine-Similarity:", cos_sim,cos_sim1)
corpus_data = pd.read_csv("corpus.tsv",sep="\t",header=None,names=['doc_id','title'])#读取csv文件
corpus_title_data=corpus_data['title'].values
qrels_train_data = pd.read_csv("qrels.train.tsv",sep="\t",header=None,names=['query_id','doc_id'])#读取csv文件
dev_id_query_data =[]
dev_querytxt_data=[]
with open("dev.query.txt","r",encoding='utf-8') as f:lines=f.readlines()for line in lines:dev_id_query_data.append(line.split("\n")[0].split("\t"))dev_querytxt_data.append(line.split("\n")[0].split("\t")[1])
print(len(dev_querytxt_data))
print(dev_querytxt_data[0:10])
f=128
t = AnnoyIndex(f, 'angular')  # Length of item vector that will be indexed
for index_i, i in tqdm(enumerate(dev_querytxt_data)):  # len 是1000embi = model.encode(i)t.add_item(index_i, embi)# if index_i==100:break
for index_j, j in tqdm(enumerate(corpus_title_data)):  # 1001500embj = model.encode(j)t.add_item(index_j + 1000, embj)# if index_j == 100: break
t.build(500)
t.save('327_6epoch_64batchdjwSaveModel_embeedding.ann')

两个超参数需要考虑: 树的数量n_trees和搜索过程中检查的节点数量search_k

基本上,建议在可用负载量的情况下尽可能大地设置n_trees,并且考虑到查询的时间限制,建议将search_k设置为尽可能大。

n_trees: 在构建期间提供,影响构建时间和索引大小。值越大,结果越准确,但索引越大。

search_k: 在运行时提供,并影响搜索性能。值越大,结果越准确,但返回的时间越长。如果不提供,就是n_trees * n, n是最近邻的个数

u = AnnoyIndex(f, 'angular')
u.load('ceshi_embeedding.ann')
for i in range(100):temp=u.get_nns_by_item(i,4)print(dev_querytxt_data[i])for idx in temp[1:]:print(corpus_title_data[idx-1000])print("------------------------------------------------------------")Facebook: 亿级向量相似度检索库Faiss原理
Faiss的核心原理其实就两个部分:
Product Quantizer, 简称PQ.
Inverted File System, 简称IVF.

2 Product Quantizer

在这里插入图片描述

在做PQ之前,首先需要指定一个参数M,这个M就是指定向量要被切分成多少段,在上图中M=4,所以向量库的每一个向量就被切分成了4段,然后把所有向量的第一段取出来做Clustering得到256个簇心(256是一个作者拍的经验值);再把所有向量的第二段取出来做Clustering得到256个簇心,直至对所有向量的第N段做完Clustering,从而最终得到了256*M个簇心。

做完Cluster,就开始对所有向量做Assign操作。这里的Assign就是把原来的N维的向量映射到M个数字,以N=128,M=4为例,首先把向量切成四段,然后对于每一段向量,都可以找到对应的最近的簇心 ID,4段向量就对应了4个簇心 ID,一个128维的向量就变成了一个由4个ID组成的向量,这样就可以完成了Assign操作的过程 – 现在,128维向量变成了4维,每个位置都只能取0~127,这就完成了向量的压缩。

完成了PQ的Pre-train,就可以看看如何基于PQ做向量检索了
在这里插入图片描述

同样是以N=128,M=4为例,对于每一个查询向量,以相同的方法把128维分成4段32维向量,然后计算每一段向量与之前预训练好的簇心的距离,得到一个4*256的表。然后就可以开始计算查询向量与库里面的向量的距离。此时,库的向量已经被量化成M个簇心 ID,而查询向量的M段子向量与各自的256个簇心距离已经预计算好了,所以在计算两个向量的时候只用查M次表,比如的库里的某个向量被量化成了[124, 56, 132, 222], 那么首先查表得到查询向量第一段子向量与其ID为124的簇心的距离,然后再查表得到查询向量第二段子向量与其ID为56的簇心的距离…最后就可以得到四个距离d1、d2、d3、d4,查询向量跟库里向量的距离d = d1+d2+d3+d4。所以在提出的例子里面,使用PQ只用4×256次128/4维向量距离计算加上4xN次查表,而最原始的暴力计算则有N次128维向量距离计算,很显然随着向量个数N的增加,后者相较于前者会越来越耗时。

2 Inverted File System
要想减少需要计算的目标向量的个数,做法就是直接对库里所有向量做KMeans Clustering,假设簇心个数为1024。那么每来一个query向量,首先计算其与1024个粗聚类簇心的距离,然后选择距离最近的top N个簇,只计算查询向量与这几个簇底下的向量的距离,计算距离的方法就是前面说的PQ。Faiss具体实现有一个小细节,就是在计算查询向量和一个簇底下的向量的距离的时候,所有向量都会被转化成与簇心的残差,这应该就是类似于归一化的操作,使得后面用PQ计算距离更准确一点。使用了IVF过后,需要计算距离的向量个数就少了几个数量级,最终向量检索就变成一个很快的操作。

import faissnlist = 100
m = 8 ##每个向量分8段
k = 4 ##求4-近邻
quantizer = faiss.IndexFlatL2(d)    # 内部的索引方式依然不变
index = faiss.IndexIVFPQ(quantizer, d, nlist, m, 8) # 每个向量都被编码为8个字节大小
index.train(xb)
index.add(xb)
index.nprobe = 10                
D, I = index.search(xq, k)          # 检索
print(I[-5:])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/468159.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity下使用Sqlite

sqlite和access类似是文件形式的数据库,不需要安装任何服务,可以存储数据,使用起来还是挺方便的。 首先需要安装DLL 需要的DLL 我们找到下面两个文件放入Plugins目录 Mono.Data.Sqlite.dll System.Data.dll DLL文件位于Unity的安装目录下的…

人工智能ai写作系统,ai智能写作机器人

人工智能AI大数据深度:基于伪原创算法,采用神经网络算法,在超过1535000篇文章中进行自动学习、聚合算法进行人工智能的创建,内容语义不变,媒体阿里、腾讯、百度均于日前在百家号内容创作者盛典上推出人工智能创作支撑平…

【深度学习模型】扩散模型(Diffusion Model)基本原理及代码讲解

前言 生成式建模的扩散思想实际上已经在2015年(Sohl-Dickstein等人)提出,然而,直到2019年斯坦福大学(Song等人)、2020年Google Brain(Ho等人)才改进了这个方法,从此引发了…

Days 30 ElfBoard TF卡接口

ELF 1的TF卡槽P1是使用CPU的SDHC1接口,该接口支持SD、SDHC和SDXC(UHS-I)卡。当SDXC卡的等级是UHS-II或更高时,会被降级到UHS-I使用。原因是从UHS-II开始,增加了新的数据脚(类比USB3.0与以往的区别&#xff…

leetcode(数组)128.最长连续序列(c++详细解释)DAY8

文章目录 1.题目示例提示 2.解答思路3.实现代码结果 4.总结 1.题目 给定一个未排序的整数数组 nums ,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。 请你设计并实现时间复杂度为 O(n) 的算法解决此问题。 示例 示例 1&a…

问题:3【单选题】实现职业理想的一般步骤是()。 #媒体#媒体

问题:3【单选题】实现职业理想的一般步骤是()。 A、创业-立业-择业 B、择业-创业-立业 C、择业-立业-创业 D、立业-择业-创业 参考答案如图所示

【网站项目】026校园美食交流系统

🙊作者简介:拥有多年开发工作经验,分享技术代码帮助学生学习,独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。🌹赠送计算机毕业设计600个选题excel文件,帮助大学选题。赠送开题报告模板&#xff…

《剑指 Offer》专项突破版 - 面试题 45 : 二叉树最低层最左边的值(C++ 实现)

题目链接:LCR 045. 找树左下角的值 - 力扣(LeetCode) 题目: 如何在一棵二叉树中找出它最低层最左边节点的值?假设二叉树中最少有一个节点。例如,在下图所示的二叉树中最低层最左边一个节点的值是 5。 分析…

Atcoder ABC338 F - Negative Traveling Salesman

Negative Traveling Salesman(消极的旅行推销员) 时间限制:6s 内存限制:1024MB 【原题地址】 所有图片源自Atcoder,题目译文源自脚本Atcoder Better! 点击此处跳转至原题 【问题描述】 【输入格式】 【输出格式】…

windows 启动和关闭mysql

1)打开我的电脑-->2)在左边文件中右键此电脑--> 3)点击管理-->4)点击服务和应用程序-->5)点击服务-->6)查找自己MySQL名称 右击 启动或者关闭

Pytorch学习03_TensorBoard使用02

Opencv读取图片,获得numpy型数据类型 复制图片的相对路径 目前这种type不适用,考虑用numpy类型 安装opencv,在pytorch环境下 pip install opencv-python 导入numpy import numpy as np 将PIL类型的img转换为 NumPy 数组 img_arraynp.array…

电子邮件、SMTP、POP3 、IMAP协议

目录 1 电子邮件 1.1 电子邮件系统的组成 1.1.1 用户代理 UA (User Agent) 1.1.2 邮件服务器 (Mail Server) 1.1.3 邮件发送和读取协议 1.2 发送和接收电子邮件的重要步骤 1.3 电子邮件的组成 1.4 电子邮件地址的格式 2 简单邮件传送协议 SMTP 2.1 SMTP 通信的三个阶…