【深度学习】Pytorch 系列教程(二):PyTorch数据结构:1、Tensor(张量): GPU加速(GPU Acceleration)

文章目录

  • 一、前言
  • 二、实验环境
  • 三、PyTorch数据结构
    • 0、分类
    • 1、Tensor(张量)
      • 1. 维度(Dimensions)
      • 2. 数据类型(Data Types)
      • 3. GPU加速(GPU Acceleration)
        • 查看可用gpu
        • 张量移动
        • 经典语句device

一、前言

ChatGPT:

  PyTorch是一个开源的机器学习框架,广泛应用于深度学习领域。它提供了丰富的工具和库,用于构建和训练各种类型的神经网络模型。下面是PyTorch的一些详细介绍:

  • 动态计算图:PyTorch使用动态计算图的方式进行计算,这意味着在运行时可以动态地定义、修改和调整计算图,使得模型的构建和调试更加灵活和直观。
  • 强大的GPU加速支持:PyTorch充分利用GPU进行计算,可以大幅提升训练和推理的速度。它提供了针对GPU的优化操作和内存管理,使得在GPU上运行模型更加高效。
  • 自动求导:PyTorch内置了自动求导的功能,可以根据定义的计算图自动计算梯度。这简化了反向传播算法的实现,使得训练神经网络模型更加便捷。
  • 大量的预训练模型和模型库:PyTorch生态系统中有许多预训练的模型和模型库可供使用,如TorchVision、TorchText和TorchAudio等,可以方便地加载和使用这些模型,加快模型开发的速度。
  • 高级抽象接口:PyTorch提供了高级抽象接口,如nn.Module和nn.functional,用于快速构建神经网络模型。这些接口封装了常用的神经网络层和函数,简化了模型的定义和训练过程。
  • 支持分布式训练:PyTorch支持在多个GPU和多台机器上进行分布式训练,可以加速训练过程,处理大规模的数据和模型。

  总体而言,PyTorch提供了一个灵活而强大的平台,使得深度学习的研究和开发更加便捷和高效。它的简洁的API和丰富的功能使得用户可以快速实现复杂的神经网络模型,并在各种任务中取得优秀的性能。

二、实验环境

  本系列实验使用如下环境

conda create -n DL python==3.11
conda activate DL
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

三、PyTorch数据结构

0、分类

  • Tensor(张量):Tensor是PyTorch中最基本的数据结构,类似于多维数组。它可以表示标量、向量、矩阵或任意维度的数组。
  • Tensor的操作:PyTorch提供了丰富的操作函数,用于对Tensor进行各种操作,如数学运算、统计计算、张量变形、索引和切片等。这些操作函数能够高效地利用GPU进行并行计算,加速模型训练过程。
  • Variable(变量):Variable是对Tensor的封装,用于自动求导。在PyTorch中,Variable会自动跟踪和记录对其进行的操作,从而构建计算图并支持自动求导。在PyTorch 0.4.0及以后的版本中,Variable被废弃,可以直接使用Tensor来进行自动求导。
  • Dataset(数据集):Dataset是一个抽象类,用于表示数据集。通过继承Dataset类,可以自定义数据集,并实现数据加载、预处理和获取样本等功能。PyTorch还提供了一些内置的数据集类,如MNIST、CIFAR-10等,用于方便地加载常用的数据集。
  • DataLoader(数据加载器):DataLoader用于将Dataset中的数据按批次加载,并提供多线程和多进程的数据预读功能。它可以高效地加载大规模的数据集,并支持数据的随机打乱、并行加载和数据增强等操作。
  • Module(模块):Module是PyTorch中用于构建模型的基类。通过继承Module类,可以定义自己的模型,并实现前向传播和反向传播等方法。Module提供了参数管理、模型保存和加载等功能,方便模型的训练和部署。

1、Tensor(张量)

  Tensor(张量)是PyTorch中用于表示多维数据的主要数据结构,类似于多维数组,可以存储和操作数字数据。

1. 维度(Dimensions)

  Tensor(张量)的维度(Dimensions)是指张量的轴数或阶数。在PyTorch中,可以使用size()方法获取张量的维度信息,使用dim()方法获取张量的轴数。

在这里插入图片描述

2. 数据类型(Data Types)

  PyTorch中的张量可以具有不同的数据类型:

  • torch.float32或torch.float:32位浮点数张量。
  • torch.float64或torch.double:64位浮点数张量。
  • torch.float16或torch.half:16位浮点数张量。
  • torch.int8:8位整数张量。
  • torch.int16或torch.short:16位整数张量。
  • torch.int32或torch.int:32位整数张量。
  • torch.int64或torch.long:64位整数张量。
  • torch.bool:布尔张量,存储True或False。

【深度学习】Pytorch 系列教程(一):PyTorch数据结构:1、Tensor(张量)及其维度(Dimensions)、数据类型(Data Types)

3. GPU加速(GPU Acceleration)

  GPU(图形处理器)是一种强大的硬件设备,可以并行处理大量数据,加速深度学习任务的执行。在PyTorch中,可以使用GPU加速来进行张量计算。

查看可用gpu
import torch# 检测系统中是否有可用的GPU
if torch.cuda.is_available():# 输出可用的GPU设备数量print(f"GPU可用,可用的GPU设备数量:{torch.cuda.device_count()}")# 输出每个可用GPU设备的名称for i in range(torch.cuda.device_count()):print(f"GPU设备 {i}: {torch.cuda.get_device_name(i)}")
else:print("GPU不可用")

在这里插入图片描述

张量移动

  要在GPU上执行张量计算,首先需要确保系统具有兼容的GPU并安装了相应的GPU驱动程序和CUDA(Compute Unified Device Architecture)工具包(详见实验环境部分)。接下来,使用以下步骤将张量移动到GPU上:

import torch# 检查GPU是否可用
if torch.cuda.is_available():# 创建一个张量并将其移动到GPU上tensor = torch.tensor([1, 2, 3])tensor = tensor.to('cuda')print(tensor)# 进行张量计算result = tensor * 2print(result)# 将张量移回CPUresult = result.to('cpu')print(result)
else:print("GPU不可用")

在这里插入图片描述

经典语句device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
import torchdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")x = torch.tensor([1, 2, 3]).to(device)
result = x * 2
print(result)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/470716.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【解决(几乎)任何机器学习问题】:超参数优化篇(超详细)

这篇文章相当长,您可以添加至收藏夹,以便在后续有空时候悠闲地阅读。 有了优秀的模型,就有了优化超参数以获得最佳得分模型的难题。那么,什么是超参数优化呢?假设您的机器学习项⽬有⼀个简单的流程。有⼀个数据集&…

Apache 神禹(shenyu)源码阅读(三)——被网关路由的后端服务 Client 向 Admin 注册的数据传输(Client端)

前言 在真正测试 Divide 插件时,想要知道后端服务(以下称为 Client)是如何将自己的信息注册到管理台(以下称为 Client)。这里后端服务用的是 shenyu 自带的 http 的例子,项目名字为 shenyu-examples-http。…

问题:单层工业厂房柱子吊装时,其校正的内容包括( )。 #微信#经验分享#知识分享

问题:单层工业厂房柱子吊装时,其校正的内容包括(  )。 A、截面尺寸偏差 B、平面位置 C、标高 D、垂直度 E、柱的长度 参考答案如图所示

前端可能需要的一些安装

Node.js Node.js 官网 Node.js 中文网 Node.js is an open-source, cross-platform JavaScript runtime environment. Node.js是一个开源、跨平台的JavaScript运行时环境。Recommended for most users 推荐大多数用户使用哔哩哔哩安装视频 安装 node.js 的时候,会…

《区块链公链数据分析简易速速上手小册》第8章:实战案例研究(2024 最新版)

文章目录 8.1 案例分析:投资决策支持8.1.1 基础知识8.1.2 重点案例:股票市场趋势预测准备工作实现步骤步骤1: 加载和准备数据步骤2: 特征工程步骤3: 训练模型步骤4: 评估模型 结论 8.1.3 拓展案例 1:基于情感分析的投资策略准备工作实现步骤步…

相机图像质量研究(19)常见问题总结:CMOS期间对成像的影响--Sensor Noise

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结:光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结:光学结构对成…

备战蓝桥杯---图论之最短路Bellman-Ford算法及优化

目录 上次我们讲到复杂度为(nm)logm(m为边,n为点)的迪杰斯特拉算法,其中有一个明显的不足就是它无法解决包含负权边的图。 于是我们引进Bellman-Ford算法。 核心:枚举所有的点,能松弛就松弛,直…

【AIGC】Stable Diffusion的生成参数入门

Stable Diffusion 的生成参数是用来控制图像生成过程的重要设置,下面是一些常见的生成参数及其详解 1、采样器,关于采样器的选择参照作者的上一篇文章 2、采样步数(Sampling Steps)是指在生成图像时模型执行的总步数&#xff0c…

Stable Diffusion系列(五):原理剖析——从文字到图片的神奇魔法(扩散篇)

文章目录 DDPM论文整体原理前向扩散过程反向扩散过程模型训练过程模型生成过程概率分布视角参数模型设置论文结果分析 要想完成SD中从文字到图片的操作,必须要做到两步,第一步是理解文字输入包含的语义,第二步是利用语义引导图片的生成。下面…

【剪辑必备】今天我教你如何手动去下载苹果官网4K预告片 完全免费

🚀 个人主页 极客小俊 ✍🏻 作者简介:web开发者、设计师、技术分享博主 🐋 希望大家多多支持一下, 我们一起学习和进步!😄 🏅 如果文章对你有帮助的话,欢迎评论 💬点赞&a…

Gemini 1.5 Pro揭秘:Google DeepMind新一代AI模型如何突破千万级别词汇限制?

Gemini 1.5 Pro 发布! 这款模型凭借其超长的上下文处理能力脱颖而出,支持10M tokens。 它的多模态特性意味着,无论面对多么庞大复杂的内容,Gemini 1.5 Pro都能游刃有余地应对。 在AI的世界里,上下文的理解如同记忆的…

计算机设计大赛 深度学习YOLOv5车辆颜色识别检测 - python opencv

文章目录 1 前言2 实现效果3 CNN卷积神经网络4 Yolov56 数据集处理及模型训练5 最后 1 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 **基于深度学习YOLOv5车辆颜色识别检测 ** 该项目较为新颖,适合作为竞赛课题方向&#xff0…