Matplotlib plt.scatter:从入门到精通,只需一篇文章!

Matplotlib plt.scatter:从入门到精通,只需一篇文章!🚀

在这里插入图片描述

利用Matplotlib进行数据可视化示例


🌵文章目录🌵

  • 一、plt.scatter入门:轻松迈出第一步 👣
  • 二、进阶探索:plt.scatter的高级用法和技巧🔍
  • 三、参考文档📚
  • 四、结尾🌳

一、plt.scatter入门:轻松迈出第一步 👣

🎈 欢迎来到Matplotlib的plt.scatter世界!这是一个强大而灵活的工具,用于创建散点图,帮助你直观地理解和分析数据。在这里,我们将从基础开始,逐步掌握如何使用plt.scatter来创建散点图。

📌 首先,确保你已经安装了Matplotlib库。如果没有安装,可以使用以下命令进行安装:

pip install matplotlib

📚 接下来,让我们导入必要的库并创建一个简单的散点图。

import matplotlib.pyplot as plt
import numpy as np# 创建一些随机数据
x = np.random.rand(50)
y = np.random.rand(50)# 设置全局字体为支持中文的字体
plt.rcParams['font.sans-serif'] = ['SimHei']# 使用plt.scatter创建散点图
plt.scatter(x, y)# 添加标题和坐标轴标签
plt.title('简单的散点图')
plt.xlabel('X轴')
plt.ylabel('Y轴')# 显示图形
plt.show()

🎉 效果展示

Fig.1 使用plt.scatter来创建散点图

运行上述代码,你将看到如图1所示的散点图,其中包含50个随机分布的点。🎉

二、进阶探索:plt.scatter的高级用法和技巧🔍

🌈 散点图是一种非常直观的数据可视化方式,可以展示两个变量之间的关系。通过调整散点图的颜色、大小、形状等属性,我们可以进一步强调数据的某些特征,使故事更加生动。

💡 下面是一个自定义散点颜色和大小的散点图示例:

import matplotlib.pyplot as plt
import numpy as np# 设置全局字体为支持中文的字体
plt.rcParams['font.sans-serif'] = ['SimHei']
# 解决保存图像是负号'-'显示为方块的问题
plt.rcParams['axes.unicode_minus'] = False# 创建一个2x3的子图网格
fig, axs = plt.subplots(2, 3, figsize=(15, 10))  # figsize设置图形大小# 示例1: 单一颜色和固定大小的散点图
x1 = np.random.rand(50)
y1 = np.random.rand(50)
axs[0, 0].scatter(x1, y1, color='red', s=50)
axs[0, 0].set_title('单一颜色和固定大小的散点图')
axs[0, 0].set_xlabel('X轴')
axs[0, 0].set_ylabel('Y轴')# 示例2: 不同颜色和固定大小的散点图
x2 = np.random.rand(50)
y2 = np.random.rand(50)
colors2 = np.random.rand(50)
axs[0, 1].scatter(x2, y2, c=colors2, s=50)
axs[0, 1].set_title('不同颜色和固定大小的散点图')
axs[0, 1].set_xlabel('X轴')
axs[0, 1].set_ylabel('Y轴')# 示例3: 单一颜色和不同大小的散点图
x3 = np.random.rand(50)
y3 = np.random.rand(50)
sizes3 = np.random.randint(10, 100, 50)
axs[0, 2].scatter(x3, y3, color='blue', s=sizes3)
axs[0, 2].set_title('单一颜色和不同大小的散点图')
axs[0, 2].set_xlabel('X轴')
axs[0, 2].set_ylabel('Y轴')# 示例4: 不同颜色和不同大小的散点图
x4 = np.random.rand(50)
y4 = np.random.rand(50)
colors4 = np.random.rand(50)
sizes4 = np.random.randint(10, 100, 50)
axs[1, 0].scatter(x4, y4, c=colors4, s=sizes4)
axs[1, 0].set_title('不同颜色和不同大小的散点图')
axs[1, 0].set_xlabel('X轴')
axs[1, 0].set_ylabel('Y轴')# 示例5: 使用颜色映射的散点图
x5 = np.random.rand(50)
y5 = np.random.rand(50)
z5 = np.random.rand(50)
axs[1, 1].scatter(x5, y5, c=z5, cmap='viridis')
axs[1, 1].set_title('使用颜色映射的散点图')
axs[1, 1].set_xlabel('X轴')
axs[1, 1].set_ylabel('Y轴')# 示例6: 使用分组和自定义样式的散点图
x6 = np.random.rand(100)
y6 = np.random.rand(100)
groups6 = np.random.choice(['A', 'B'], size=100)
colors6 = {'A': 'red', 'B': 'blue'}
sizes6 = {'A': 50, 'B': 100}for group, color, size in zip(groups6, colors6.values(), sizes6.values()):axs[1, 2].scatter(x6[groups6 == group], y6[groups6 == group], color=color, label=group, s=size)
axs[1, 2].set_title('分组和自定义样式的散点图')
axs[1, 2].set_xlabel('X轴')
axs[1, 2].set_ylabel('Y轴')
axs[1, 2].legend()  # 添加图例# 调整子图之间的间距
plt.subplots_adjust(wspace=0.4, hspace=0.4)# 显示图形
plt.show()

🎉 效果展示

Fig.2 使用plt.scatter来自定义散点颜色和大小

  • 以上代码使用Matplotlib库创建了一个包含六个子图的散点图矩阵。📈📊
  • 每个子图展示了不同类型的散点图,包括:
    • 单一颜色和固定大小的散点图;
    • 不同颜色和固定大小的散点图;
    • 单一颜色和不同大小的散点图;
    • 不同颜色和不同大小的散点图;
    • 使用颜色映射的散点图;
    • 使用分组和自定义样式的散点图;

  这些散点图基于随机生成的数据绘制,并通过调整颜色、大小和分组等参数来展示scatter函数的不同功能和用法。最后,代码调整了子图之间的间距,并显示了整个图像。💡🖼️

三、参考文档📚

  1. Matplotlib官网
  2. Matplotlib初探:认识数据可视化与Matplotlib
  3. 数据分析利器对决:Matplotlib中的MATLAB风格与面向对象风格,你选谁?

四、结尾🌳

  亲爱的读者,感谢您每一次停留和阅读,这是对我们最大的支持和鼓励!🙏在茫茫网海中,您的关注让我们深感荣幸。您的独到见解和建议,如明灯照亮我们前行的道路。🌟若在阅读中有所收获,一个赞或收藏,对我们意义重大。

  我们承诺,会不断自我挑战,为您呈现更精彩的内容。📚有任何疑问或建议,欢迎在评论区畅所欲言,我们时刻倾听。💬让我们携手在知识的海洋中航行,共同成长,共创辉煌!🌱🌳感谢您的厚爱与支持,期待与您共同书写精彩篇章!

  您的点赞👍、收藏🌟、评论💬和关注💖,是我们前行的最大动力!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/472638.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue的一些基础设置

1.浏览器控制台显示Vue 设置找到扩展,搜索Vue 下载这个 然后 点击扩展按钮 点击详细信息 选择这个,然后重启一下就好了 ——————————————————————————————————————————— 2.优化工程结构 src的components里要…

知识图谱:py2neo将csv文件导入neo4j

文章目录 安装py2neo创建节点-连线关系图导入csv文件删除重复节点并连接边 安装py2neo 安装python中的neo4j操作库:pip install py2neo 安装py2neo后我们可以使用其中的函数对neo4j进行操作。 图数据库Neo4j中最重要的就是结点和边(关系)&a…

sql注入猜测字段数的基本方法

示例表; 写sql语句查询结果排序有两种写法, 一是 select * from 表名 where 条件 order by 字段名; 一是 select * from 表名 where 条件 order by 数字; 数字是查询结果中的第几个字段; 下图根据 name 排序查询一次…

Flutter 动画(显式动画、隐式动画、Hero动画、页面转场动画、交错动画)

前言 当前案例 Flutter SDK版本:3.13.2 显式动画 Tween({this.begin,this.end}) 两个构造参数,分别是 开始值 和 结束值,根据这两个值,提供了控制动画的方法,以下是常用的; controller.forward() : 向前…

解线性方程组(二)——Jacobi迭代法求解(C++)

迭代法 相比于直接法求解,迭代法使用多次迭代来逐渐逼近解,其精度比不上直接法,但是其速度会比直接法快很多,计算精度可控,特别适用于求解系数矩阵为大型稀疏矩阵的方程组。 Jacobi迭代法 假设有方程组如下&#xf…

JDBC查询操作

目录 加载驱动获取连接创建会话发送SQL处理结果关闭资源测试 加载驱动 // 加载驱动Class.forName("com.mysql.cj.jdbc.Driver");获取连接 // 获取连接String url "jdbc:mysql://127.0.0.1:3306/book";String username "root" …

第14集《佛说四十二章经》

好!请大家打开讲义第十九面,第三十九章、教诲无差。 佛言:学佛道者,佛所言说,皆应信顺。譬如食蜜,中边皆甜。吾经亦尔。 大智慧的佛陀说,佛弟子们在修学过程中,对佛陀所说的一切佛…

cloudflare更换第三方证书

由于我的网站一直放在腾讯云上,域名和证书也是在腾讯云上解析的,后来将DNS迁移到了cloudflare,最近SSL证书到期了遇到一些麻烦记录一下。 由于服务器上原来是装的腾讯云发的免费证书,所以这次我也是按部就班的先去申请腾讯云的证…

政安晨:【示例演绎】【Python】【Numpy数据处理】快速入门(四)—— 函数方法

准备工作 这是Numpy数据处理的示例演绎系列文章的第四篇,我的前三篇文章为: 政安晨:【示例演绎】【Python】【Numpy数据处理】快速入门(一)https://blog.csdn.net/snowdenkeke/article/details/136125773政安晨&#…

【51单片机】AD模数转换DA数模转换(江科大)

1.AD/DA介绍 AD(Analog to Digital):模拟-数字转换,将模拟信号转换为计算机可操作的数字信号 DA(Digital to Analog):数字-模拟转换,将计算机输出的数字信号转换为模拟信号 AD/DA转换打开了计算机与模拟信号的大门,极大的提高了计算机系统的应用范围,也为模拟信号数字化处理…

C#,二分法(Bisection Method)求解方程的算法与源代码

1 二分法 二分法是一种分治算法&#xff0c;是一种数学思维。 对于区间[a&#xff0c;b]上连续不断且f&#xff08;a&#xff09;f&#xff08;b&#xff09;<0的函数yf&#xff08;x&#xff09;&#xff0c;通过不断地把函数f&#xff08;x&#xff09;的零点所在的区间…

问题:人的安全知识和技能是天生的。() #媒体#知识分享#学习方法

问题&#xff1a;人的安全知识和技能是天生的。&#xff08;) 人的安全知识和技能是天生的。() 参考答案如图所示 问题&#xff1a;&#xff08;&#xff09;是党和国家的根本所在、命脉所在&#xff0c;是全国各族人民的利益所在、幸福所在。 A.人民当家作主 B.坚持和完善…