人工智能学习与实训笔记(八):百度飞桨套件使用方法介绍

人工智能专栏文章汇总:人工智能学习专栏文章汇总-CSDN博客

本篇目录

八、百度飞桨套件使用

8.1 飞桨预训练模型套件PaddleHub

8.1.1 一些本机CPU可运行的飞桨预训练简单模型(亲测可用)

8.1.1.1 人脸检测模型

8.1.1.2 中文分词模型

8.1.2 预训练模型Fine-tune

8.2 飞桨开发套件

8.2.1 PaddleSeg - 图像分割

8.2.2 PaddleNLP - 自然语言处理


八、百度飞桨套件使用

深度学习的探索目标:

  • 需要针对业务场景提出建模方案;
  • 探索众多的复杂模型哪个更加有效;
  • 探索将模型部署到各种类型的硬件上。

基于飞桨的开发套件进行开发和学习,可以解决模型资源,二次开发和工业部署的问题:

8.1 飞桨预训练模型套件PaddleHub

PaddleHub属于预训练模型应用工具,集成了最优秀的算法模型,开发者可以快速使用高质量的预训练模型结合Fine-tune API快速完成模型迁移到部署的全流程工作。

8.1.1 一些本机CPU可运行的飞桨预训练简单模型(亲测可用)

注意代码运行前,需要安装相应的Paddle包(代码最开始的几行注释即为安装过程)

8.1.1.1 人脸检测模型
#pip install paddle
#pip install paddlehub==2.1
#hub install ultra_light_fast_generic_face_detector_1mb_640==1.1.2import paddlehub as hub
import matplotlib.image as mpimg
import matplotlib.pyplot as pltmodule = hub.Module(name="ultra_light_fast_generic_face_detector_1mb_640")
res = module.face_detection(paths = ["./test.jpg"], visualization=True, output_dir='test_face_detection_output')res_img_path = './test_face_detection_output/test.jpg'
img = mpimg.imread(res_img_path)
plt.figure(figsize=(10, 10))
plt.imshow(img)
plt.axis('off')
plt.show()
8.1.1.2 中文分词模型
#pip install paddle
#pip install paddlehub==2.1
#hub install ultra_light_fast_generic_face_detector_1mb_640==1.1.2import paddlehub as hub
lac = hub.Module(name="lac")
test_text = ["1996年,曾经是微软员工的加布·纽维尔和麦克·哈灵顿一同创建了Valve软件公司。他们在1996年下半年从id software取得了雷神之锤引擎的使用许可,用来开发半条命系列。"]
res = lac.lexical_analysis(texts = test_text)print("中文词法分析结果:", res)

8.1.2 预训练模型Fine-tune

研究神经网络模型层间特征图可视化的工作表明,模型最前端的神经网络层倾向于提取一些普遍的、共有的视觉特征,如纹理、边缘等信息。越往后则越倾向于任务相关的特征。涉及计算机视觉图像分类的模型,在特征提取功能上,更多的依赖模型的前端的神经层,而将特征映射到标签的功能则更多的依赖于模型末端的神经层。

也就是说,越靠近输出的神经网络层越具有任务相关性。NLP领域的第三范式(pre-trained + fine tune)便是采用了这种思想。语言模型在大规模语料上进行预训练之后,便具有了强大的语义表征能力。将PLM接上后续任务相关的神经网络层进行微调,便可以在下游任务中获得更好的效果。

因此我们可以基于预训练模型,通过使用私有数据对模型进行Fine-tune,从而实现模型的迁移。

要实现迁移学习,包括如下步骤:

  1. 安装PaddleHub
  2. 数据准备
  3. 模型准备
  4. 训练准备

具体做法可以参考:飞桨AI Studio星河社区-人工智能学习与实训社区

8.2 飞桨开发套件

如果说PaddleHub提供的是AI任务快速运行方案(POC),飞桨的开发套件则是比PaddleHub提供“更丰富的模型调节”和“领域相关的配套工具”,开发者基于这些开发套件可以实现当前应用场景中的最优方案(State of the Art)。

PaddleHub属于预训练模型应用工具,集成了最优秀的算法模型,开发者可以快速使用高质量的预训练模型结合Fine-tune API快速完成模型迁移到部署的全流程工作。但是在某些场景下,开发者不仅仅满足于快速运行,而是希望能在开源算法的基础上继续调优,实现最佳方案。如果将PaddleHub视为一个拿来即用的工具,飞桨的开发套件则是工具箱,工具箱中不仅包含多种多样的工具(深度学习算法模型),更包含了这些工具的制作方法(模型训练调优方案)。如果工具不合适,可以自行调整工具以便使用起来更顺手。

飞桨提供了一系列的开发套件,内容涵盖各个领域和方向:

  • 计算机视觉领域:图像分割 PaddleSeg、目标检测 PaddleDetection、图像分类 PaddleClas、海量类别分类 PLSC,文字识别 PaddleOCR;
  • 自然语言领域:语义理解 ERNIE;
  • 语音领域:语音识别 DeepSpeech、语音合成 Parakeet;
  • 推荐领域:弹性计算推荐 ElasticCTR;
  • 其他领域:图学习框架 PGL、深度强化学习框架 PARL。

下面以PaddleSeg为例,介绍飞桨开发套件的使用方式。其余开发套件的使用模式相似,均包括快速运行的命令、丰富优化选项的配置文件和与该领域问题配套的专项工具。如果读者对其他领域有需求,可以查阅对应开发套件的使用文档。

8.2.1 PaddleSeg - 图像分割

图像分割任务是对每个像素点进行分类,需要给出每个像素点是什么分类的概率。

一般图像分割网络结构:

(1)网络的输入是H×W(H为高、W为宽)像素的图片,输出是N×H×W的概率图。输出的概率图大小和输入一致(H×W),而这个N就是类别。

(2)中间的网络结构分为Encoder(编码)和Decoder(解码)两部分。Encoder部分是下采样的过程,这是为了增大网络感受野,类似于缩小地图,利于看到更大的区域范围找到区域边界;Decoder部分是上采样的过程,为了恢复像素级别的特征地图,以实现像素点的分类,类似于放大地图,标注图像分割边界时更精细。

PaddleSeg覆盖了DeepLabv3+、U-Net、PSPNet、HRNet和Fast-SCNN等20+主流分割模型,并提供了多个损失函数和多种数据增强方法等高级功能,用户可以根据使用场景从PaddleSeg中选择出合适的图像分割方案,从而更快捷高效地完成图像分割应用。

实例:医学视盘分割

使用过程包括PaddleSeg环境安装,数据处理,模型选择和训练,模型评估,模型导出,模型部署等。具体过程可参考:飞桨AI Studio星河社区-人工智能学习与实训社区

8.2.2 PaddleNLP - 自然语言处理

PaddleNLP是基于Paddle框架开发的自然语言处理 (NLP) 开源项目,项目中包含工具、算法、模型和数据多种资源。PaddleNLP通过丰富的模型库、简洁易用的API,提供飞桨2.0的最佳实践并加速NLP领域应用产业落地效率。

GitHub链接:https://github.com/PaddlePaddle/PaddleNLP

丰富的模型库:涵盖了NLP主流应用相关的前沿模型,包括中文词向量、预训练模型、词法分析、文本分类、文本匹配、文本生成、机器翻译、通用对话、问答系统等。

实例:基于ERNIE模型的新闻标题分类

下面,我们将展示如何基于PaddleNLP中的预训练模型ERINE来实现另外一个文本分类的任务:对新闻标题进行分类。文本分类是指人们使用计算机将文本数据进行自动化归类的任务,是自然语言处理(NLP)中的一项重要任务。

本案例的模型实现方案如下图所示, 模型的输入是新闻标题的文本,模型的输出就是新闻标题的类别。在建模过程中,对于输入的新闻标题文本,首先需要进行数据处理生成规整的文本序列数据,包括语句分词、将词转换为id,过长文本截断、过短文本填充等等操作;然后使用预训练模型ERNIE对文本序列进行编码,获得文本的语义向量表示;最后经过全连接层和softmax处理得到文本属于各个新闻类别的概率。方案中不仅会使用ERNIE预训练模型,还会使用大量PaddleNLP的API,更便捷的完成数据处理和模型评估等工作。

ERNIE是基于Transfomer模型进行的改进,Transfomer模型是一种比LSTM更加复杂的、适合处理序列数据的模型,它使用Self-attenion的方法,将RNN变成每个输入与其他输入部分计算匹配度来决定注意力权重的方式,使得模型引入了Attention机制的同时也具备了并行化计算的能力。以这种Self-attention结构为核心,设计Encoder-Decoder的结构形成Transformer模型。BERT和ERNIE均是将Transformer的Encoder部分结构单独取出,用多个的非标记语料(转成标记数据,如填空/判断句子连续性等)的任务训练,并将得到的Encoder向量作为词汇的基础语义表示用于多种NLP任务(如阅读理解)的模型。

关于Transfomer模型可参考:Transfomer模型详解

使用过程包括PaddleSeg环境安装,数据处理,模型选择和训练,模型评估,模型导出,模型部署等。具体过程可参考:飞桨AI Studio星河社区-人工智能学习与实训社区

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/473322.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【maya 入门笔记】基本视图和拓扑

1. 界面布局 先看基本窗口布局,基本窗口情况如下: 就基本窗口布局的情况来看,某种意义上跟blender更像一点(与3ds max相比)。 那么有朋友就说了,玛格基,那blender最下面的时间轴哪里去了&…

基于java springboot+mybatis学生学科竞赛管理管理系统设计和实现

基于java springbootmybatis学生学科竞赛管理管理系统设计和实现 🍅 作者主页 央顺技术团队 🍅 欢迎点赞 👍 收藏 ⭐留言 📝 🍅 文末获取源码联系方式 📝 🍅 查看下方微信号获取联系方式 承接各…

深度学习系列53:大模型微调概述

参考系列文章:https://zhuanlan.zhihu.com/p/635152813 github链接:https://github.com/liguodongiot/llm-action 1 训练范式 下面这种instructive learning,在模型参数达到80亿后,会发生质的提升: 类似的还有手写pr…

使用PaddleNLP UIE模型提取上市公司PDF公告关键信息

项目地址:使用PaddleNLP UIE模型抽取PDF版上市公司公告 - 飞桨AI Studio星河社区 (baidu.com) 背景介绍 本项目将演示如何通过PDFPlumber库和PaddleNLP UIE模型,抽取公告中的相关信息。本次任务的PDF内容是破产清算的相关公告,目标是获取受理…

17-k8s控制器资源-job控制

job控制器:就是一次性任务的pod控制器,pod完成作业后不会重启,其重启策略是:Never 1,job控制器案例描述 启动一个pod,执行完成一个事件,然后pod关闭; 事件:计算π的值&a…

力扣题目训练(12)

2024年2月5日力扣题目训练 2024年2月5日力扣题目训练476. 数字的补数482. 密钥格式化485. 最大连续 1 的个数148. 排序链表164. 最大间距 2024年2月5日力扣题目训练 2024年2月5日第十二天编程训练,今天主要是进行一些题训练,包括简单题3道、中等题2道和…

构造题记录

思路&#xff1a;本题要求构造一个a和b数组相加为不递减序列&#xff0c;并且b数组的极差为最小的b数组。 可以通过遍历a数组并且每次更新最大值&#xff0c;并使得b数组为这个最大值和当前a值的差。 #include <bits/stdc.h> using namespace std; #define int long lon…

C#根据权重抽取随机数

&#xff08;游戏中一个很常见的简单功能&#xff0c;比如抽卡抽奖抽道具&#xff0c;或者一个怪物有多种攻击动作&#xff0c;按不同的权重随机出个攻击动作等等……&#xff09; 假如有三种物品 A、B、C&#xff0c;对应的权重分别是A&#xff08;50&#xff09;&#xff0c…

探索设计模式的魅力:揭秘模版方法模式-让你的代码既灵活又可维护

设计模式专栏&#xff1a;http://t.csdnimg.cn/U54zu 目录 一、开篇二、应用场景一坨坨代码实现存在的问题 三、解决方案模式方法结构示意图及说明用模板方法模式重构示例解决的问题 四、工作原理使用模板方法模式重写示例结构图核心结构&#xff1a;抽象类和具体实现 五、总结…

FLUENT Meshing Watertight Geometry工作流入门 - 7 共享拓扑

本视频中学到的内容&#xff1a; “共享拓扑”任务的工作细节如何使用“更新边界”和“更新区域”任务来更新边界和区域的属性 视频链接&#xff1a; FLUENT Meshing入门教程-7应用共享拓扑_哔哩哔哩_bilibili 【Import Geometry】 启动Ansys Fluent进入网格模式。在工作流类…

linux系统zabbix工具监控web页面

web页面监控 内建key介绍浏览器配置浏览器页面查看方式 监控指定的站点的资源下载速度&#xff0c;及页面响应时间&#xff0c;还有响应代码&#xff1b; web Scenario&#xff1a; web场景&#xff08;站点&#xff09;web page &#xff1a;web页面&#xff0c;一个场景有多…