深度学习基础之《TensorFlow框架(3)—TensorBoard》

一、TensorBoard可视化学习

1、TensorFlow有一个亮点就是,我们能看到自己写的程序的可视化效果,这个功能就是TensorBoard

2、TensorFlow可用于训练大规模深度神经网络所需的计算,使用该工具涉及的计算往往复杂而深奥。为了方便TensorFlow程序的理解、调试和优化,TensorFlow提供了TensorBoard可视化工具

二、实现程序可视化过程

1、数据序列化
TensorBoard通过读取TensorFlow的事件文件来运行,需要将数据生成一个序列化的summary protobuf对象
将图序列化到本地events文件,这将在指定目录中生成一个events文件,其名称格式如下:
events.out.tfevents.{timestamp}.{hostname}

2、将可视化的图写入事件文件中API

(1)1.x版本:
tf.summary.FileWriter(path, graph=)
说明:
path:路径
graph:指定的图

(2)2.x版本:
writer = tf.summary.create_file_writer(path)
说明:创建一个文件写入器writer
path:路径

tf.summary.graph(graph)
说明:写入图

3、启动TensorBoard
终端输入:
tensorboard --logdir="事件文件的地址"
在浏览器中打开TensorBoard的图页面http://127.0.0.1:6006,就会看到图了

4、修改代码

import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import tensorflow as tfdef tensorflow_demo():"""TensorFlow的基本结构"""# TensorFlow实现加减法运算a_t = tf.constant(2)b_t = tf.constant(3)c_t = a_t + b_tprint("TensorFlow加法运算结果:\n", c_t)print(c_t.numpy())# 2.0版本不需要开启会话,已经没有会话模块了return Nonedef graph_demo():"""图的演示"""# TensorFlow实现加减法运算a_t = tf.constant(2)b_t = tf.constant(3)c_t = a_t + b_tprint("TensorFlow加法运算结果:\n", c_t)print(c_t.numpy())# 查看默认图# 方法1:调用方法default_g = tf.compat.v1.get_default_graph()print("default_g:\n", default_g)# 方法2:查看属性# print("a_t的图属性:\n", a_t.graph)# print("c_t的图属性:\n", c_t.graph)# 自定义图new_g = tf.Graph()# 在自己的图中定义数据和操作with new_g.as_default():a_new = tf.constant(20)b_new = tf.constant(30)c_new = a_new + b_newprint("c_new:\n", c_new)print("a_new的图属性:\n", a_new.graph)print("b_new的图属性:\n", b_new.graph)# 开启new_g的会话with tf.compat.v1.Session(graph=new_g) as sess:c_new_value = sess.run(c_new)print("c_new_value:\n", c_new_value)print("我们自己创建的图为:\n", sess.graph)# 可视化自定义图# 1)创建一个文件写入器writerwriter = tf.summary.create_file_writer("./tmp/summary")# 2)将图写入with writer.as_default():tf.summary.graph(new_g)return Noneif __name__ == "__main__":# 代码1:TensorFlow的基本结构# tensorflow_demo()# 代码2:图的演示graph_demo()

运行之后生成:./tmp/summary/events.out.tfevents.1708140220.server001.26046.0.v2

5、运行tensorboard

tensorboard --bind_all --logdir="./tmp/summary"

访问http://127.0.0.1:6006

6、图例说明
将“Auto-extract high-degree nodes”选项去除

图例就不是两个三角重叠在一起了

椭圆是OpNode,小圆是Constant,箭头是数据流动

参考资料:
https://tensorflow.google.cn/versions/r2.6/api_docs/python/tf/summary/graph

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/474306.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机网络——14CDN

CDN 视频流化服务和CDN:上下文 视频流量:占据着互连网大部分的带宽 Netflix,YouTube:占据37%,16%的下行流量 挑战:规模性-如何服务~1B用户? 单个超级服务器无法提供服务(为什么&am…

浅谈电商场景中的扣除库存问题

库存 一、场景二、扣减时机1.下单时扣库存2.支付完成扣库存3.预扣除 三、库存存储方案1.数据库存储2.数据库缓存混合存储 四、整体方案1.单数据库方案2.主从数据库方案3.主从数据库缓存方案4.数据库缓存混合存储 五、其他情况1.秒杀QPS过高2.Redis QPS过高3.Master DB QPS过高4…

docker (六)-进阶篇-数据持久化最佳实践MySQL部署

容器的数据挂载通常指的是将宿主机(虚拟机或物理机)上的目录或文件挂载到容器内部 MySQL单节点安装 详情参考docker官网文档 1 创建对应的数据目录、日志目录、配置文件目录(参考二进制安装,需自己建立数据存储目录) mkdir -p /data/mysq…

phpstrom创建thinkphp项目

安装php和composer 参考 安装phpstrom 创建项目 查看thinkphp版本 https://packagist.org/packages/topthink/think 打开所在项目编辑配置 即可调试运行

helm部署gitlab-runner问题解决

关于.gitlab-ci.yml中build镜像时,docker守护进程未启动错误 问题截图 解决方法 conf.toml添加 [[runners.kubernetes.volumes.host_path]]name "docker"mount_path "/var/run/docker.sock"read_only falsehost_path "/var/run/dock…

相机图像质量研究(31)常见问题总结:图像处理对成像的影响--图像差

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结:光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结:光学结构对成…

《Go 简易速速上手小册》第7章:包管理与模块(2024 最新版)

文章目录 7.1 使用 Go Modules 管理依赖 - 掌舵向未来7.1.1 基础知识讲解7.1.2 重点案例:Web 服务功能描述实现步骤扩展功能 7.1.3 拓展案例 1:使用数据库功能描述实现步骤扩展功能 7.1.4 拓展案例 2:集成 Redis 缓存功能描述实现步骤扩展功能…

《Go 简易速速上手小册》第3章:数据结构(2024 最新版)

文章目录 3.1 数组与切片:Go 语言的动态队伍3.1.1 基础知识讲解3.1.2 重点案例:动态成绩单功能描述实现代码扩展功能 3.1.3 拓展案例 1:数据分析功能描述实现代码扩展功能 3.1.4 拓展案例 2:日志过滤器功能描述实现代码扩展功能 3…

【JavaSE篇】——异常(一万字让你了解异常的全方位知识)

目录 🎈什么是异常 🚩算术异常 🚩数组越界异常 🚩空指针异常 🚩输入不匹配异常 🎈异常的体系结构 🎈异常的分类 🚩运行时异常(非受查异常) 🚩编译时异常(受查异常…

什么样的分类器才是最好的

我们总想要一个最好的算法,分类也同样如此 但对某一个任务,某个具体的分类器不可能同时满足或提高所有上面介绍的指标。 如果一个分类器能正确分对所有的实例,那么各项指标都已经达到最优,但这样的分类器往往不存在。比如之前说…

数据结构第十六天(二叉树层序遍历/广度优先搜索(BFS)/队列使用)

目录 前言 概述 接口 源码 测试函数 运行结果 往期精彩内容 前言 从前的日色变得慢,车,马,邮件都慢,一生,只够爱一个人。 概述 二叉树的层序遍历可以使用广度优先搜索(BFS)来实现。具体步骤如下&…

循环、数组、match

for循环 循环:周而复始 For(临时变量;循环条件;腰间变更){ 循环体 } For循环可以嵌套 while循环 声明变量 While(条件){ 循环体 变量的变化} do while循环 do{ 执行语句; …