OpenGL学习——14.投光物_点光源

前情提要:本文代码源自Github上的学习文档“LearnOpenGL”,我仅在源码的基础上加上中文注释。本文章不以该学习文档做任何商业盈利活动,一切著作权归原作者所有,本文仅供学习交流,如有侵权,请联系我删除。LearnOpenGL原网址:https://learnopengl.com/ 请大家多多支持原作者!


当谈及计算机图形学和实时渲染时,OpenGL是一个备受推崇的工具。作为一种跨平台的图形库,它提供了丰富的功能和灵活性,使开发者能够创建令人惊叹的视觉效果。在OpenGL的广阔世界中,点光源是一种无可替代的元素,它们为场景注入现实感和深度。点光源是一种模拟光的源头,可以在三维空间中发射光线,产生逼真的光照效果。无论是为游戏创建逼真的光影效果,还是为模拟现实世界中的光照情况,点光源在OpenGL中扮演着重要的角色。在本文中,我们将深入探讨OpenGL中点光源的基本原理、使用方法以及如何优化其性能,为您揭示点光源背后的奥秘。无论您是OpenGL的新手还是经验丰富的开发者,本文都将为您提供有关点光源的全面指南,帮助您在图形编程的旅程中迈出重要的一步。

项目结构:

vs_light_casters_point_light.txt着色器代码:

#version 330 corelayout (location = 0) in vec3 aPos;   // 位置变量的属性位置值为 0 
layout (location = 1) in vec3 aNormal;
layout (location = 2) in vec2 aTexCoords;out vec3 FragPos;  
out vec3 Normal;
out vec2 TexCoords;uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;void main()
{gl_Position = projection * view * model * vec4(aPos, 1.0);FragPos = vec3(model * vec4(aPos, 1.0));Normal = mat3(transpose(inverse(model))) * aNormal;TexCoords = aTexCoords;
}

fs_light_casters_point_light.txt着色器代码:

#version 330 core// 材质
struct Material {sampler2D diffuse;sampler2D specular;    float shininess;
}; // 光照
struct Light {vec3 position;vec3 direction;vec3 ambient;vec3 diffuse;vec3 specular;float constant;float linear;float quadratic;
};out vec4 FragColor; // 输出片段颜色in vec3 FragPos;  
in vec3 Normal;
in vec2 TexCoords;uniform vec3 viewPos;
uniform Material material;
uniform Light light;void main()
{// 环境光照vec3 ambient = light.ambient * texture(material.diffuse, TexCoords).rgb;// 漫反射vec3 norm = normalize(Normal);vec3 lightDir = normalize(light.position - FragPos - light.direction);float diff = max(dot(norm, lightDir), 0.0);vec3 diffuse = light.diffuse * diff * texture(material.diffuse, TexCoords).rgb;// 镜面光照vec3 viewDir = normalize(viewPos - FragPos);vec3 reflectDir = reflect(-lightDir, norm);  float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);vec3 specular = light.specular * spec * texture(material.specular, TexCoords).rgb;  // 光的衰减float distance    = length(light.position - FragPos);float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * (distance * distance));ambient  *= attenuation; diffuse  *= attenuation;specular *= attenuation;// 光照结果vec3 result = ambient + diffuse + specular;FragColor = vec4(result, 1.0);
}

vs_light_cube.txt着色器代码:

#version 330 core
layout (location = 0) in vec3 aPos;   // 位置变量的属性位置值为 0 uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;void main()
{gl_Position = projection * view * model * vec4(aPos, 1.0);
}

fs_light_cube.txt着色器代码:

#version 330 core
out vec4 FragColor; // 输出片段颜色uniform vec3 lightCubeColor;void main()
{FragColor = vec4(lightCubeColor, 1.0);
}

SHADER_H.h头文件代码:

#ifndef SHADER_H#define SHADER_H#include <glad/glad.h>;
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>#include <string>
#include <fstream>
#include <sstream>
#include <iostream>/* 着色器类 */
class Shader
{
public:/* 着色器程序 */unsigned int shaderProgram;/* 构造函数,从文件读取并构建着色器 */Shader(const char* vertexPath, const char* fragmentPath){std::string vertexCode;std::string fragmentCode;std::ifstream vShaderFile;std::ifstream fShaderFile;/* 保证ifstream对象可以抛出异常: */vShaderFile.exceptions(std::ifstream::failbit | std::ifstream::badbit);fShaderFile.exceptions(std::ifstream::failbit | std::ifstream::badbit);try{/* 打开文件 */vShaderFile.open(vertexPath);fShaderFile.open(fragmentPath);std::stringstream vShaderStream, fShaderStream;/* 读取文件的缓冲内容到数据流中 */vShaderStream << vShaderFile.rdbuf();fShaderStream << fShaderFile.rdbuf();/* 关闭文件处理器 */vShaderFile.close();fShaderFile.close();/* 转换数据流到string */vertexCode = vShaderStream.str();fragmentCode = fShaderStream.str();}catch (std::ifstream::failure e){std::cout << "ERROR::SHADER::FILE_NOT_SUCCESFULLY_READ" << std::endl;}/* string类型转化为char字符串类型 */const char* vShaderCode = vertexCode.c_str();const char* fShaderCode = fragmentCode.c_str();/* 着色器 */unsigned int vertex, fragment;int success;/* 信息日志(编译或运行报错信息) */char infoLog[512];/* 顶点着色器 */vertex = glCreateShader(GL_VERTEX_SHADER);glShaderSource(vertex, 1, &vShaderCode, NULL);/* 编译 */glCompileShader(vertex);/* 打印编译错误(如果有的话) */glGetShaderiv(vertex, GL_COMPILE_STATUS, &success);if (!success){glGetShaderInfoLog(vertex, 512, NULL, infoLog);std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;};/* 片段着色器 */fragment = glCreateShader(GL_FRAGMENT_SHADER);glShaderSource(fragment, 1, &fShaderCode, NULL);/* 编译 */glCompileShader(fragment);/* 打印编译错误(如果有的话) */glGetShaderiv(fragment, GL_COMPILE_STATUS, &success);if (!success){glGetShaderInfoLog(fragment, 512, NULL, infoLog);std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;}/* 着色器程序 */shaderProgram = glCreateProgram();/* 连接顶点着色器和片段着色器到着色器程序中 */glAttachShader(shaderProgram, vertex);glAttachShader(shaderProgram, fragment);/* 链接着色器程序到我们的程序中 */glLinkProgram(shaderProgram);/* 打印连接错误(如果有的话) */glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success);if (!success){glGetProgramInfoLog(shaderProgram, 512, NULL, infoLog);std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;}/* 删除着色器,它们已经链接到我们的程序中了,已经不再需要了 */glDeleteShader(vertex);glDeleteShader(fragment);}/* 激活着色器程序 */void use(){glUseProgram(shaderProgram);}/* 实用程序统一函数,Uniform工具函数,用于设置uniform类型的数值 */// ------------------------------------------------------------------------void setBool(const std::string& name, bool value) const{glUniform1i(glGetUniformLocation(shaderProgram, name.c_str()), (int)value);}// ------------------------------------------------------------------------void setInt(const std::string& name, int value) const{glUniform1i(glGetUniformLocation(shaderProgram, name.c_str()), value);}// ------------------------------------------------------------------------void setFloat(const std::string& name, float value) const{glUniform1f(glGetUniformLocation(shaderProgram, name.c_str()), value);}// ------------------------------------------------------------------------void setVec2(const std::string& name, const glm::vec2& value) const{glUniform2fv(glGetUniformLocation(shaderProgram, name.c_str()), 1, &value[0]);}void setVec2(const std::string& name, float x, float y) const{glUniform2f(glGetUniformLocation(shaderProgram, name.c_str()), x, y);}// ------------------------------------------------------------------------void setVec3(const std::string& name, const glm::vec3& value) const{glUniform3fv(glGetUniformLocation(shaderProgram, name.c_str()), 1, &value[0]);}void setVec3(const std::string& name, float x, float y, float z) const{glUniform3f(glGetUniformLocation(shaderProgram, name.c_str()), x, y, z);}// ------------------------------------------------------------------------void setVec4(const std::string& name, const glm::vec4& value) const{glUniform4fv(glGetUniformLocation(shaderProgram, name.c_str()), 1, &value[0]);}void setVec4(const std::string& name, float x, float y, float z, float w) const{glUniform4f(glGetUniformLocation(shaderProgram, name.c_str()), x, y, z, w);}// ------------------------------------------------------------------------void setMat2(const std::string& name, const glm::mat2& mat) const{glUniformMatrix2fv(glGetUniformLocation(shaderProgram, name.c_str()), 1, GL_FALSE, &mat[0][0]);}// ------------------------------------------------------------------------void setMat3(const std::string& name, const glm::mat3& mat) const{glUniformMatrix3fv(glGetUniformLocation(shaderProgram, name.c_str()), 1, GL_FALSE, &mat[0][0]);}// ------------------------------------------------------------------------void setMat4(const std::string& name, const glm::mat4& mat) const{glUniformMatrix4fv(glGetUniformLocation(shaderProgram, name.c_str()), 1, GL_FALSE, &mat[0][0]);}/* 删除着色器程序 */void deleteProgram(){glDeleteProgram(shaderProgram);}
};#endif

camera.h头文件代码:

#ifndef CAMERA_H#define CAMERA_H#include <glad/glad.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>#include <vector>/* 定义摄影机移动的几个可能选项。 */
enum Camera_Movement {/* 前进 */FORWARD,/* 后退 */BACKWARD,/* 左移 */LEFT,/* 右移 */RIGHT,/* 上升 */RISE,/* 下降 */FALL
};/* 默认摄像机参数 */
/* 偏航角 */
const float YAW = -90.0f;
/* 俯仰角 */
const float PITCH = 0.0f;
/* 速度 */
const float SPEED = 2.5f;
/* 鼠标灵敏度 */
const float SENSITIVITY = 0.1f;
/* 视野 */
const float ZOOM = 70.0f;/* 一个抽象的摄影机类,用于处理输入并计算相应的欧拉角、向量和矩阵,以便在OpenGL中使用 */
class Camera
{
public:/* 摄影机属性 *//* 位置 */glm::vec3 Position;/* 朝向 */glm::vec3 Front;/* 上轴 */glm::vec3 Up;/* 右轴 */glm::vec3 Right;/* 世界竖直向上方向 */glm::vec3 WorldUp;/* 偏航角 */float Yaw;/* 俯仰角 */float Pitch;/* 摄影机选项 *//* 移动速度 */float MovementSpeed;/* 鼠标灵敏度 */float MouseSensitivity;/* 视野 */float Zoom;/* 矢量的构造函数 */Camera(glm::vec3 position = glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3 up = glm::vec3(0.0f, 1.0f, 0.0f), float yaw = YAW, float pitch = PITCH) : Front(glm::vec3(0.0f, 0.0f, -1.0f)), MovementSpeed(SPEED), MouseSensitivity(SENSITIVITY), Zoom(ZOOM){Position = position;WorldUp = up;Yaw = yaw;Pitch = pitch;updateCameraVectors();}/* 标量的构造函数 */Camera(float posX, float posY, float posZ, float upX, float upY, float upZ, float yaw, float pitch) : Front(glm::vec3(0.0f, 0.0f, -1.0f)), MovementSpeed(SPEED), MouseSensitivity(SENSITIVITY), Zoom(ZOOM){Position = glm::vec3(posX, posY, posZ);WorldUp = glm::vec3(upX, upY, upZ);Yaw = yaw;Pitch = pitch;updateCameraVectors();}/* 返回使用欧拉角和LookAt矩阵计算的视图矩阵 */glm::mat4 GetViewMatrix(){return glm::lookAt(Position, Position + Front, Up);}/* 处理从任何类似键盘的输入系统接收的输入。接受相机定义ENUM形式的输入参数(从窗口系统中提取) */void ProcessKeyboard(Camera_Movement direction, float deltaTime){float velocity = MovementSpeed * deltaTime;if (direction == FORWARD)Position += Front * velocity;if (direction == BACKWARD)Position -= Front * velocity;if (direction == LEFT)Position -= Right * velocity;if (direction == RIGHT)Position += Right * velocity;if (direction == RISE)Position += WorldUp * velocity;if (direction == FALL)Position -= WorldUp * velocity;}/* 处理从鼠标输入系统接收的输入。需要x和y方向上的偏移值。 */void ProcessMouseMovement(float xoffset, float yoffset, GLboolean constrainPitch = true){xoffset *= MouseSensitivity;yoffset *= MouseSensitivity;Yaw += xoffset;Pitch += yoffset;/* 确保当俯仰角超出范围时,屏幕不会翻转 */if (constrainPitch){if (Pitch > 89.0f)Pitch = 89.0f;if (Pitch < -89.0f)Pitch = -89.0f;}/* 使用更新的欧拉角更新“朝向”、“右轴”和“上轴” */updateCameraVectors();}/* 处理从鼠标滚轮事件接收的输入 */void ProcessMouseScroll(float yoffset){Zoom -= (float)yoffset;if (Zoom < 10.0f)Zoom = 10.0f;if (Zoom > 120.0f)Zoom = 120.0f;}private:/* 根据摄影机的(更新的)欧拉角计算摄影机朝向 */void updateCameraVectors(){/* 计算新的摄影机朝向 */glm::vec3 front;front.x = cos(glm::radians(Yaw)) * cos(glm::radians(Pitch));front.y = sin(glm::radians(Pitch));front.z = sin(glm::radians(Yaw)) * cos(glm::radians(Pitch));Front = glm::normalize(front);/* 还重新计算右轴和上轴 *//* 重新规范(修正)向量,因为当它们的长度越接近0或向上向下看得多时,将会导致移动速度变慢 */Right = glm::normalize(glm::cross(Front, WorldUp));Up = glm::normalize(glm::cross(Right, Front));}
};#endif

stb_image.h头文件下载地址:

https://github.com/nothings/stb/blob/master/stb_image.h

(需要科学上网)

container2.png图片:

(请右键图片另存为到你的项目文件夹中)

container2_specular.png图片:

(请右键图片另存为到你的项目文件夹中)

stb_image_S.cpp源文件代码:

/* 预处理器会修改头文件,让其只包含相关的函数定义源码 */
#define STB_IMAGE_IMPLEMENTATION
/* 图像加载头文件 */
#include "stb_image.h"

LightCasters_PointLight.cpp源文件代码:

/*** OpenGL学习——14.投光物_点光源* 2024年2月17日**/#include <iostream>#include "glad/glad.h"
#include "GLFW/glfw3.h"
#include "glad/glad.c"
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>/* 着色器头文件 */
#include "SHADER_H.h"
/* 摄影机头文件 */
#include "camera.h"
/* 图像加载头文件 */
#include "stb_image.h"#pragma comment(lib, "glfw3.lib")
#pragma comment(lib, "opengl32.lib")/* 屏幕宽度 */
const int screenWidth = 1600;
/* 屏幕高度 */
const int screenHeight = 900;/* 摄影机初始位置 */
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
float lastX = screenWidth / 2.0f;
float lastY = screenHeight / 2.0f;
bool firstMouse = true;/* 两帧之间的时间 */
float deltaTime = 0.0f;
float lastFrame = 0.0f;/* 灯光位置 */
glm::vec3 lightPos(0.0f, 0.0f, -2.0f);/* 这是framebuffer_size_callback函数的定义,该函数用于处理窗口大小变化的回调函数。当窗口的大小发生变化时,该函数会被调用,
它会设置OpenGL视口(Viewport)的大小,以确保渲染结果正确显示。 */
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{glViewport(0, 0, width, height);
}/* 处理用户输入 */
void processInput(GLFWwindow* window)
{/* 退出 */if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)glfwSetWindowShouldClose(window, true);/* 前进 */if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)camera.ProcessKeyboard(FORWARD, deltaTime);/* 后退 */if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)camera.ProcessKeyboard(BACKWARD, deltaTime);/* 左移 */if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)camera.ProcessKeyboard(LEFT, deltaTime);/* 右移 */if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)camera.ProcessKeyboard(RIGHT, deltaTime);/* 上升 */if (glfwGetKey(window, GLFW_KEY_SPACE) == GLFW_PRESS)camera.ProcessKeyboard(RISE, deltaTime);/* 下降 */if (glfwGetKey(window, GLFW_KEY_LEFT_SHIFT) == GLFW_PRESS)camera.ProcessKeyboard(FALL, deltaTime);
}/* 鼠标回调函数 */
void mouse_callback(GLFWwindow* window, double xposIn, double yposIn)
{float xpos = static_cast<float>(xposIn);float ypos = static_cast<float>(yposIn);if (firstMouse){lastX = xpos;lastY = ypos;firstMouse = false;}float xoffset = xpos - lastX;float yoffset = lastY - ypos;lastX = xpos;lastY = ypos;camera.ProcessMouseMovement(xoffset, yoffset);
}/* 滚轮回调函数 */
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{camera.ProcessMouseScroll(static_cast<float>(yoffset));
}/* 纹理加载函数 */
unsigned int loadTexture(char const* path)
{unsigned int textureID;glGenTextures(1, &textureID);int width, height, nrComponents;unsigned char* data = stbi_load(path, &width, &height, &nrComponents, 0);if (data){GLenum format;if (nrComponents == 1)format = GL_RED;else if (nrComponents == 3)format = GL_RGB;else if (nrComponents == 4)format = GL_RGBA;glBindTexture(GL_TEXTURE_2D, textureID);glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);glGenerateMipmap(GL_TEXTURE_2D);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);stbi_image_free(data);}else{std::cout << "Texture failed to load at path: " << path << std::endl;stbi_image_free(data);}return textureID;
}int main()
{/* 这是GLFW库的初始化函数,用于初始化GLFW库的状态以及相关的系统资源。 */glfwInit();/* 下面两行代码表示使用OpenGL“3.3”版本的功能 *//* 这行代码设置OpenGL上下文的主版本号为3。这意味着我们希望使用OpenGL “3.几”版本的功能。 */glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);/* 这行代码设置OpenGL上下文的次版本号为3。这表示我们希望使用OpenGL “几.3”版本的功能。 */glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);/* 这行代码设置OpenGL的配置文件为核心配置文件(Core Profile)。核心配置文件是3.2及以上版本引入的,移除了一些已经被认为过时或不推荐使用的功能。 */glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);/* 这行代码的作用是设置OpenGL上下文为向前兼容模式,但该程序无需向后兼容,所以注释掉 *///glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);/* 这行代码创建一个名为"LearnOpenGL"的窗口,窗口的初始宽度为800像素,高度为600像素。最后两个参数为可选参数,用于指定窗口的监视器(显示器),在此处设置为NULL表示使用默认的显示器。函数返回一个指向GLFWwindow结构的指针,用于表示创建的窗口。 */GLFWwindow* window = glfwCreateWindow(screenWidth, screenHeight, "LearnOpenGL", NULL, NULL);/* 这是一个条件语句,判断窗口是否成功创建。如果窗口创建失败,即窗口指针为NULL,执行if语句块内的代码。 */if (window == NULL){/* 这行代码使用C++标准输出流将字符串"Failed to create GLFW window"打印到控制台。即打印出“GLFW窗口创建失败”的错误信息。 */std::cout << "Failed to create GLFW window" << std::endl;/* 这行代码用于终止GLFW库的运行,释放相关的系统资源。 */glfwTerminate();/* 这是main函数的返回语句,表示程序异常结束并返回-1作为退出码。在C++中,返回负数通常表示程序发生错误或异常退出。 */return -1;}/* 这行代码将指定的窗口的上下文设置为当前上下文。它告诉OpenGL将所有渲染操作应用于指定窗口的绘图缓冲区。* 这是为了确保OpenGL在正确的窗口上进行渲染。 */glfwMakeContextCurrent(window);/* 这是一个条件语句,用于检查GLAD库的初始化是否成功。gladLoadGLLoader函数是GLAD库提供的函数,用于加载OpenGL函数指针。glfwGetProcAddress函数是GLFW库提供的函数,用于获取特定OpenGL函数的地址。这行代码将glfwGetProcAddress函数的返回值转换为GLADloadproc类型,并将其作为参数传递给gladLoadGLLoader函数。如果初始化失败,即返回值为假(NULL),则执行if语句块内的代码。 */if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)){/* 这行代码使用C++标准输出流将字符串"Failed to initialize GLAD"打印到控制台。即打印出“GLAD库初始化失败”的错误信息。 */std::cout << "Failed to initialize GLAD" << std::endl;/* 这是main函数的返回语句,表示程序异常结束并返回-1作为退出码。在C++中,返回负数通常表示程序发生错误或异常退出。 */return -1;}/* 渲染之前必须告诉OpenGL渲染窗口的尺寸大小,即视口(Viewport),这样OpenGL才只能知道怎样根据窗口大小显示数据和坐标。 *//* 这行代码设置窗口的维度(Dimension),glViewport函数前两个参数控制窗口左下角的位置。第三个和第四个参数控制渲染窗口的宽度和高度(像素)。 *//* 实际上也可以将视口的维度设置为比GLFW的维度小,这样子之后所有的OpenGL渲染将会在一个更小的窗口中显示,* 这样子的话我们也可以将一些其它元素显示在OpenGL视口之外。 */glViewport(0, 0, screenWidth, screenHeight);/* 这行代码设置了窗口大小变化时的回调函数,即当窗口大小发生变化时,framebuffer_size_callback函数会被调用。 */glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);/* 鼠标回调 */glfwSetCursorPosCallback(window, mouse_callback);/* 滚轮回调 */glfwSetScrollCallback(window, scroll_callback);/* 隐藏光标 */glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);/* 开启深度测试 */glEnable(GL_DEPTH_TEST);/* 着色器文件 */Shader lightingShader("vs_light_casters_point_light.txt", "fs_light_casters_point_light.txt");Shader lightCubeShader("vs_light_cube.txt", "fs_light_cube.txt");/* 定义顶点坐标数据的数组 */float vertices[] ={// 顶点坐标           // 法向量             //纹理坐标// +X面0.5f,  0.5f, -0.5f,   1.0f,  0.0f,  0.0f,   1.0f, 1.0f,   // 右上角0.5f, -0.5f, -0.5f,   1.0f,  0.0f,  0.0f,   1.0f, 0.0f,   // 右下角0.5f, -0.5f,  0.5f,   1.0f,  0.0f,  0.0f,   0.0f, 0.0f,   // 左下角0.5f,  0.5f,  0.5f,   1.0f,  0.0f,  0.0f,   0.0f, 1.0f,   // 左上角// -X面              -0.5f,  0.5f,  0.5f,  -1.0f,  0.0f,  0.0f,   1.0f, 1.0f,   // 右上角-0.5f, -0.5f,  0.5f,  -1.0f,  0.0f,  0.0f,   1.0f, 0.0f,   // 右下角-0.5f, -0.5f, -0.5f,  -1.0f,  0.0f,  0.0f,   0.0f, 0.0f,   // 左下角-0.5f,  0.5f, -0.5f,  -1.0f,  0.0f,  0.0f,   0.0f, 1.0f,   // 左上角// +Y面              0.5f,  0.5f, -0.5f,   0.0f,  1.0f,  0.0f,   1.0f, 1.0f,   // 右上角0.5f,  0.5f,  0.5f,   0.0f,  1.0f,  0.0f,   1.0f, 0.0f,   // 右下角-0.5f,  0.5f,  0.5f,   0.0f,  1.0f,  0.0f,   0.0f, 0.0f,   // 左下角-0.5f,  0.5f, -0.5f,   0.0f,  1.0f,  0.0f,   0.0f, 1.0f,   // 左上角// -Y面              0.5f, -0.5f,  0.5f,   0.0f, -1.0f,  0.0f,   1.0f, 1.0f,   // 右上角0.5f, -0.5f, -0.5f,   0.0f, -1.0f,  0.0f,   1.0f, 0.0f,   // 右下角-0.5f, -0.5f, -0.5f,   0.0f, -1.0f,  0.0f,   0.0f, 0.0f,   // 左下角-0.5f, -0.5f,  0.5f,   0.0f, -1.0f,  0.0f,   0.0f, 1.0f,   // 左上角// +Z面              0.5f,  0.5f,  0.5f,   0.0f,  0.0f,  1.0f,   1.0f, 1.0f,   // 右上角0.5f, -0.5f,  0.5f,   0.0f,  0.0f,  1.0f,   1.0f, 0.0f,   // 右下角-0.5f, -0.5f,  0.5f,   0.0f,  0.0f,  1.0f,   0.0f, 0.0f,   // 左下角-0.5f,  0.5f,  0.5f,   0.0f,  0.0f,  1.0f,   0.0f, 1.0f,   // 左上角// -Z面              -0.5f,  0.5f, -0.5f,   0.0f,  0.0f, -1.0f,   1.0f, 1.0f,   // 右上角-0.5f, -0.5f, -0.5f,   0.0f,  0.0f, -1.0f,   1.0f, 0.0f,   // 右下角0.5f, -0.5f, -0.5f,   0.0f,  0.0f, -1.0f,   0.0f, 0.0f,   // 左下角0.5f,  0.5f, -0.5f,   0.0f,  0.0f, -1.0f,   0.0f, 1.0f    // 左上角};/* 定义索引数据的数组 */unsigned int indices[] ={// 注意索引从0开始! 此例的索引(0,1,2,3)就是顶点数组vertices的下标,这样可以由下标代表顶点组合成矩形// +X面0,  1,  3, // 第一个三角形1,  2,  3, // 第二个三角形// -X面4,  5,  7, // 第一个三角形5,  6,  7, // 第二个三角形// +Y面8,  9, 11, // 第一个三角形9, 10, 11, // 第二个三角形// -Y面12, 13, 15, // 第一个三角形13, 14, 15, // 第二个三角形// +Z面16, 17, 19, // 第一个三角形17, 18, 19, // 第二个三角形// -Z面20, 21, 23, // 第一个三角形21, 22, 23, // 第二个三角形};/* 方块的位置 */glm::vec3 cubePositions[] = {glm::vec3(0.0f,  0.0f,  0.0f),glm::vec3(2.0f,  5.0f, -7.0f),glm::vec3(-1.5f, -2.2f, -2.5f),glm::vec3(-3.8f, -2.0f, -6.3f),glm::vec3(2.4f, -0.4f, -3.5f),glm::vec3(-1.7f,  3.0f, -7.5f),glm::vec3(1.3f, -2.0f, -2.5f),glm::vec3(1.5f,  2.0f, -4.5f),glm::vec3(3.5f,  0.2f, -1.5f),glm::vec3(-1.3f,  1.0f, -1.5f)};/* 创建顶点数组对象(cubeVAO)(lightCubeVAO),顶点缓冲对象(VBO)和元素缓冲对象(EBO) */unsigned int cubeVAO, lightCubeVAO;unsigned int VBO;unsigned int EBO;glGenVertexArrays(1, &cubeVAO);glGenVertexArrays(1, &lightCubeVAO);glGenBuffers(1, &VBO);glGenBuffers(1, &EBO);/* cubeVAO *//* 绑定顶点数组对象,顶点缓冲对象和元素缓冲对象 */glBindVertexArray(cubeVAO);glBindBuffer(GL_ARRAY_BUFFER, VBO);glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);/* 将顶点数据复制到顶点缓冲对象中 */glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);/* 将索引数据复制到元素缓冲对象中 */glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);/* 设置顶点属性指针,指定如何解释顶点数据 */glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0); // 顶点坐标/* 启用顶点属性 */glEnableVertexAttribArray(0);/* 设置顶点属性指针,指定如何解释顶点数据 */glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(3 * sizeof(float))); // 法向量/* 启用顶点属性 */glEnableVertexAttribArray(1);glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(6 * sizeof(float)));glEnableVertexAttribArray(2);/* lightCubeVAO *//* 绑定顶点数组对象,顶点缓冲对象和元素缓冲对象 */glBindVertexArray(lightCubeVAO);glBindBuffer(GL_ARRAY_BUFFER, VBO);glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);/* 将顶点数据复制到顶点缓冲对象中 */glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);/* 将索引数据复制到元素缓冲对象中 */glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);/* 设置顶点属性指针,指定如何解释顶点数据 */glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0); // 顶点坐标/* 启用顶点属性 */glEnableVertexAttribArray(0);/* 解绑顶点数组对象,顶点缓冲对象和元素缓冲对象 */glBindVertexArray(0);glBindBuffer(GL_ARRAY_BUFFER, 0);glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);/* 材质 */unsigned int diffuseMap = loadTexture("container2.png");unsigned int specularMap = loadTexture("container2_specular.png");lightingShader.use();/* 材质漫反射 */lightingShader.setInt("material.diffuse", 0);/* 材质镜面反射 */lightingShader.setInt("material.specular", 1);/* 这是一个循环,只要窗口没有被要求关闭,就会一直执行循环内的代码。 */while (!glfwWindowShouldClose(window)){float currentFrame = static_cast<float>(glfwGetTime());deltaTime = currentFrame - lastFrame;lastFrame = currentFrame;/* 这行代码调用processInput函数,用于处理用户输入。 */processInput(window);/* 这行代码设置清空颜色缓冲区时的颜色。在这个示例中,将颜色设置为浅蓝色。 */glClearColor(0.0f, 0.0f, 0.0f, 1.0f);/* 这行代码清空颜色缓冲区,以准备进行下一帧的渲染。 */glClear(GL_COLOR_BUFFER_BIT);/* 清除深度缓冲 */glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);/* 使用着色器程序 */lightingShader.use();/* 摄影机位置 */lightingShader.setVec3("viewPos", camera.Position);/* 灯光特性 */glm::vec3 lightColor;lightColor.x = static_cast<float>(1.0f);lightColor.y = static_cast<float>(1.0f);lightColor.z = static_cast<float>(1.0f);glm::vec3 diffuseColor = lightColor   * glm::vec3(0.8f);glm::vec3 ambientColor = diffuseColor * glm::vec3(0.2f);lightingShader.setVec3("light.ambient", ambientColor);lightingShader.setVec3("light.diffuse", diffuseColor);lightingShader.setVec3("light.specular", 1.0f, 1.0f, 1.0f);/* 平行光 *///glm::vec3 sun_direction(-(float)sin(glfwGetTime()), -(float)cos(glfwGetTime()), 0.0f);//lightingShader.setVec3("light.direction", sun_direction);/* 点光源 *//* 位置 */lightingShader.setVec3("light.position", lightPos);/* 亮度衰减 */lightingShader.setFloat("light.constant", 1.0f);lightingShader.setFloat("light.linear", 0.09f);lightingShader.setFloat("light.quadratic", 0.032f);/* 材质特性 */lightingShader.setFloat("material.shininess", 64.0f);/* 视角矩阵 */glm::mat4 view = glm::mat4(1.0f);view = camera.GetViewMatrix();/* 透视矩阵 */glm::mat4 projection = glm::mat4(1.0f);projection = glm::perspective(glm::radians(camera.Zoom), (float)screenWidth / (float)screenHeight, 0.1f, 100.0f);/* 将视图矩阵的值传递给对应的uniform */lightingShader.setMat4("view", view);/* 将投影矩阵的值传递给对应的uniform */lightingShader.setMat4("projection", projection);/* 模型矩阵 */glm::mat4 model;/* 绑定顶点数组对象 */glBindVertexArray(cubeVAO);for (unsigned int i = 0; i < 10; i++){/* 计算每个对象的模型矩阵,并在绘制之前将其传递给着色器 */model = glm::mat4(1.0f);/* 移动 */model = glm::translate(model, cubePositions[i]);/* 旋转 */model = glm::rotate(model, (float)glfwGetTime() * (i + 1) / 5, glm::vec3(-0.5f + ((float)i / 20.0), 1.0f, 0.0f));/* 将模型矩阵的值传递给对应的uniform */lightingShader.setMat4("model", model);// bind diffuse mapglActiveTexture(GL_TEXTURE0);glBindTexture(GL_TEXTURE_2D, diffuseMap);// bind specular mapglActiveTexture(GL_TEXTURE1);glBindTexture(GL_TEXTURE_2D, specularMap);/* 绘制矩形 */glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED_INT, 0);}/* 使用着色器程序 */lightCubeShader.use();/* 灯方块颜色 */lightCubeShader.setVec3("lightCubeColor", 1.0f, 1.0f, 1.0f);/* 将投影矩阵的值传递给对应的uniform */lightCubeShader.setMat4("projection", projection);/* 将视图矩阵的值传递给对应的uniform */lightCubeShader.setMat4("view", view);/* 赋值为单位矩阵 */model = glm::mat4(1.0f);/* 移动 */model = glm::translate(model, glm::vec3(0.0f, 0.0f, -2.0f));/* 缩放 */model = glm::scale(model, glm::vec3(0.2f));/* 将模型矩阵的值传递给对应的uniform */lightCubeShader.setMat4("model", model);/* 绑定顶点数组对象 */glBindVertexArray(lightCubeVAO);/* 绘制矩形 */glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED_INT, 0);/* 这行代码交换前后缓冲区,将当前帧的渲染结果显示到窗口上。 */glfwSwapBuffers(window);/* 这行代码处理窗口事件,例如键盘输入、鼠标移动等。它会检查是否有事件发生并触发相应的回调函数。 */glfwPollEvents();}/* 删除顶点数组对象 */glDeleteVertexArrays(1, &cubeVAO);/* 删除顶点缓冲对象 */glDeleteBuffers(1, &VBO);/* 删除元素缓冲对象 */glDeleteBuffers(1, &EBO);/* 删除着色器程序 */lightingShader.deleteProgram();lightCubeShader.deleteProgram();/* 这行代码终止GLFW库的运行,释放相关的系统资源。 */glfwTerminate();/* 程序结束,返回0 */return 0;
}

运行结果:

注意!该程序操作方式如下:

WSAD键控制前后左右移动,空格键飞行,shift键下降,
鼠标移动控制视角,鼠标滚轮控制视野缩放。
Esc键退出程序。

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
另外在运行程序时,请打开键盘的英文大写锁定,
否则按shift之后会跳出中文输入法。
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::


非常感谢您的关注和阅读!如果您对本文有任何建议、疑问或其他想法,都欢迎在下方的评论区留言!我非常重视您的反馈,它对我改善和扩展本文的内容非常重要。
我鼓励各位读者分享自己的经验、提出问题或分享有关OpenGL投光物的其他相关信息。您的参与将使这篇博客文章更加丰富和有益。无论您是一个有经验的OpenGL开发者,还是一个对此领域感兴趣的新手,您的想法和观点都是宝贵的。
请不要犹豫,尽管在评论区发表您的意见。如果您有任何关于本文中提到的内容的疑问,我将竭诚为您解答。如果您有其他有关OpenGL投光物的提示、技巧或资源,也请分享给大家。我相信通过我们的互动,我们可以一起学习和提高。
再次感谢您的参与和支持!期待与您的互动!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/475219.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SaaS(软件即服务)是什么,在中国有发展?

SaaS&#xff08;Software as a Service&#xff0c;软件即服务&#xff09;是一种基于互联网的软件交付模式&#xff0c;用户通过互联网访问和使用软件&#xff0c;而无需在本地安装和维护软件。这种模式通常以订阅的形式提供&#xff0c;用户按照一定的周期支付费用&#xff…

K8s进阶之路-Pod的生命周期

Pod创建过程&#xff1a; 首先创建一个pod&#xff0c;然后创建一个API Server 和 Etcd【把创建出来的信息存储在etcd中】 然后创建 Scheduler&#xff0c;监控API Server是否有新的Pod&#xff0c;如果有的话&#xff0c;会通过调度算法&#xff0c;把pod调度某个node上 在nod…

C++之Easyx——图形库的基本准备工作

什么是Easyx&#xff1f; EasyX Graphics Library 是针对 Visual C 的免费绘图库&#xff0c;支持 VC6.0 ~ VC2022&#xff0c;简单易用&#xff0c;学习成本极低&#xff0c;应用领域广泛。目前已有许多大学将 EasyX 应用在教学当中。 它比Red PandaDev C上的图形库功能要强…

浅谈iPaaS对企业转型的重要性

面对数字化转型的大浪潮&#xff0c;众多企业都期望着能快速实现全面的数字化转型&#xff0c;让企业在日益激烈的竞争中拥有更稳的市场地位&#xff0c;提升自身的实力及能力&#xff0c;奠定更坚实的基底。但在数字化转型过程中&#xff0c;部分企业数字化基础水平较薄弱&…

云手机在引流方面有什么优势?

对于电商商家而言&#xff0c;无论是在亚马逊还是其他平台&#xff0c;有效的流量来源主要集中在短视频引流和社交电商营销。要在新兴社交平台为企业电商带来更多流量&#xff0c;不可忽视云手机的关键作用和独特优势。 云手机的定义与作用 在经营TikTok、Facebook和INS账号时&…

网络原理 - HTTP/HTTPS(1)

HTTP HTTP是什么 HTTP("全程超文本协议")是一种应用非常广泛的应用层协议. 文本:字符串(能在utf8/gbk)码表上找到合法字符. 超文本:不仅是字符串,还能携带图片啥的(HTML). 富文本:类似于word文档这种. HTTP诞生于1991年.目前已经发展为最主流使用的一种应用层协议.…

中国社科院与英国斯特灵大学创新与领导力博士—应该怎样选专业

现如今其实有很多人感觉只是平台成就自己&#xff0c;离开平台自己并无一技之长或过人之处。但是又不想如此安稳过日&#xff0c;一直终老。所以现在大多数人都会去想在职读个博士。 基本上都是在职博士专业为那些希望边工作边获得博士学位的在在职人员开设的&#xff0c;那么&…

Vue3+Vite+TS+Pinia+ElementPlus+Router+Axios创建项目

目录 初始项目组成1. 创建项目1.1 下载项目依赖1.2 项目自动启动1.3 src 别名设置vite.config.ts配置文件tsconfig.json配置若新创项目ts提示 1.4 运行测试 2. 清除默认样式2.1 样式清除代码下载2.2 src下创建公共样式文件夹style2.3 main.js中引入样式2.4 安装sass解析插件 2.…

Mysql开启bin-log日志

目录 一、安装配置 二、mysqlbinlog命令 一、安装配置 yum -y install mariadb mariadb-server#安装mysql数据库#默认配置文件/etc/my.cnfvim /etc/my.cnflog-binmariadb-bin #开启二进制日志 systemctl restart mariadb#会在/car/lib/mysql/产生二进制日志文件&#xff0…

HBuilderX 插件开发指南(一):从插件开发到发布的完整流程

前端目前主流使用的IDE工具有VS Code、Sublime Text3、HBuilder X等等 本期我们主要了解HBuilder X&#xff0c;作为前端通用型开发工具&#xff0c;拥有可视化的操作方式&#xff0c;内置相关环境&#xff0c;开箱即用&#xff0c;无需配置nodejs等优点外&#xff0c;对uni-a…

matlab代码--基于注水法的MIMO信道容量实现

今天接触一个简单的注水法程序&#xff0c;搞懂数学原理即可看懂代码。 1 注水法简介 详细原理可以参考&#xff1a; MIMO的信道容量以及实现 大致理论就是利用拉格朗日乘子法&#xff0c;求解信道容量的最大化问题&#xff0c;得到的解形如往水池中注水的形式&#xff0c;最…

波奇学Linux:动静态库

创建静态库 Makefile文件 mymath.c文件 mymath.h文件 编译main.c文件 gcc 编译时会把在系统目录中寻找头文件和库文件&#xff0c;文件不在系统目录中用参数 -I 头文件所在文件夹/ -L 库的地址文件夹 -l除去lib和后缀。 拷贝文件到系统目录即可不用参数 库的安装类似于把头文件…