python毕设选题 - 大数据商城人流数据分析与可视化 - python 大数据分析

文章目录

  • 0 前言
    • 课题背景
    • 分析方法与过程
      • 初步分析:
      • 总体流程:
        • 1.数据探索分析
        • 2.数据预处理
        • 3.构建模型
      • 总结
  • 最后


0 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 基于大数据的基站数据分析与可视化

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

课题背景

  • 随着当今个人手机终端的普及,出行群体中手机拥有率和使用率已达到相当高的比例,手机移动网络也基本实现了城乡空间区域的全覆盖。根据手机信号在真实地理空间上的覆盖情况,将手机用户时间序列的手机定位数据,映射至现实的地理空间位置,即可完整、客观地还原出手机用户的现实活动轨迹,从而挖掘得到人口空间分布与活动联系特征信息。移动通信网络的信号覆盖从逻辑上被设计成由若干六边形的基站小区相互邻接而构成的蜂窝网络面状服务区,手机终端总是与其中某一个基站小区保持联系,移动通信网络的控制中心会定期或不定期地主动或被动地记录每个手机终端时间序列的基站小区编号信息。
  • 商圈是现代市场中企业市场活动的空间,最初是站在商品和服务提供者的产地角度提出,后来逐渐扩展到商圈同时也是商品和服务享用者的区域。商圈划分的目的之一是为了研究潜在的顾客的分布以制定适宜的商业对策。

分析方法与过程

初步分析:

  • 手机用户在使用短信业务、通话业务、开关机、正常位置更新、周期位置更新和切入呼叫的时候均产生定位数据,定位数据记录手机用户所处基站的编号、时间和唯一标识用户的EMASI号等。历史定位数据描绘了用户的活动模式,一个基站覆盖的区域可等价于商圈,通过归纳经过基站覆盖范围的人口特征,识别出不同类别的基站范围,即可等同地识别出不同类别的商圈。衡量区域的人口特征可从人流量和人均停留时间的角度进行分析,所以在归纳基站特征时可针对这两个特点进行提取。

总体流程:

在这里插入图片描述

1.数据探索分析

EMASI号为55555的用户在2014年1月1日的定位数据
在这里插入图片描述
在这里插入图片描述

2.数据预处理

数据规约

  1. 网络类型、LOC编号和信令类型这三个属性对于挖掘目标没有用处,故剔除这三个冗余的属性。而衡量用户的停留时间并不需要精确到毫秒级,故可把毫秒这一属性删除。
  2. 把年、月和日合并记为日期,时、分和秒合并记为时间。
    在这里插入图片描述
 import numpy as npimport pandas as pddata=pd.read_excel('C://Python//DataAndCode//chapter14//demo//data//business_circle.xls')# print(data.head())#删除三个冗余属性del data[['网络类型','LOC编号','信令类型']]#合并年月日periods=pd.PeriodIndex(year=data['年'],month=data['月'],day=data['日'],freq='D')data['日期']=periodstime=pd.PeriodIndex(hour=data['时'],minutes=data['分'],seconds=data['秒'],freq='D')data['时间']=timedata['日期']=pd.to_datetime(data['日期'],format='%Y/%m/%d')data['时间']=pd.to_datetime(data['时间'],format='%H/%M/%S')


数据变换

假设原始数据所有用户在观测窗口期间L( 天)曾经经过的基站有 N个,用户有 M个,用户 i在 j天在 num1 基站的工作日上班时间停留时间为
weekday_num1,在 num1 基站的凌晨停留时间为night_num1 ,在num1基站的周末停留时间为weekend_num1, 在
num1基站是否停留为 stay_num1 ,设计基站覆盖范围区域的人流特征:
在这里插入图片描述

在这里插入图片描述
由于各个属性的之间的差异较大,为了消除数量级数据带来的影响,在进行聚类前,需要进行离差标准化处理。

   #-*- coding: utf-8 -*-#数据标准化到[0,1]import pandas as pd#参数初始化filename = '../data/business_circle.xls' #原始数据文件standardizedfile = '../tmp/standardized.xls' #标准化后数据保存路径data = pd.read_excel(filename, index_col = u'基站编号') #读取数据data = (data - data.min())/(data.max() - data.min()) #离差标准化data = data.reset_index()data.to_excel(standardizedfile, index = False) #保存结果

在这里插入图片描述

3.构建模型

构建商圈聚类模型

采用层次聚类算法对建模数据进行基于基站数据的商圈聚类,画出谱系聚类图。从图可见,可把聚类类别数取3类。

    #-*- coding: utf-8 -*-#谱系聚类图import pandas as pd#参数初始化standardizedfile = '../data/standardized.xls' #标准化后的数据文件data = pd.read_excel(standardizedfile, index_col = u'基站编号') #读取数据import matplotlib.pyplot as pltfrom scipy.cluster.hierarchy import linkage,dendrogram#这里使用scipy的层次聚类函数Z = linkage(data, method = 'ward', metric = 'euclidean') #谱系聚类图P = dendrogram(Z, 0) #画谱系聚类图plt.show()

在这里插入图片描述

模型分析

针对聚类结果按不同类别画出4个特征的折线图。

 #-*- coding: utf-8 -*-#层次聚类算法import pandas as pd#参数初始化standardizedfile = '../data/standardized.xls' #标准化后的数据文件k = 3 #聚类数data = pd.read_excel(standardizedfile, index_col = u'基站编号') #读取数据from sklearn.cluster import AgglomerativeClustering #导入sklearn的层次聚类函数model = AgglomerativeClustering(n_clusters = k, linkage = 'ward')model.fit(data) #训练模型#详细输出原始数据及其类别r = pd.concat([data, pd.Series(model.labels_, index = data.index)], axis = 1)  #详细输出每个样本对应的类别r.columns = list(data.columns) + [u'聚类类别'] #重命名表头import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号style = ['ro-', 'go-', 'bo-']xlabels = [u'工作日人均停留时间', u'凌晨人均停留时间', u'周末人均停留时间', u'日均人流量']pic_output = '../tmp/type_' #聚类图文件名前缀for i in range(k): #逐一作图,作出不同样式plt.figure()tmp = r[r[u'聚类类别'] == i].iloc[:,:4] #提取每一类for j in range(len(tmp)):plt.plot(range(1, 5), tmp.iloc[j], style[i])plt.xticks(range(1, 5), xlabels, rotation = 20) #坐标标签plt.title(u'商圈类别%s' %(i+1)) #我们计数习惯从1开始plt.subplots_adjust(bottom=0.15) #调整底部plt.savefig(u'%s%s.png' %(pic_output, i+1)) #保存图片

在这里插入图片描述

对于商圈类别1,日均人流量较大,同时工作日上班时间人均停留时间、凌晨人均停留时间和周末人均停留时间相对较短,该类别基站覆盖的区域类似于商业区

在这里插入图片描述

对于商圈类别2,凌晨人均停留时间和周末人均停留时间相对较长,而工作日上班时间人均停留时间较短,日均人流量较少,该类别基站覆盖的区域类似于住宅区。

在这里插入图片描述

对于商圈类别3,这部分基站覆盖范围的工作日上班时间人均停留时间较长,同时凌晨人均停留时间、周末人均停留时间相对较短,该类别基站覆盖的区域类似于白领上班族的工作区域。

总结

商圈类别2的人流量较少,商圈类别3的人流量一般,而且白领上班族的工作区域一般的人员流动集中在上下班时间和午间吃饭时间,这两类商圈均不利于运营商的促销活动的开展,商圈类别1的人流量大,在这样的商业区有利于进行运营商的促销活动。

最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/478848.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

js设计模式:迭代器模式

作用: 对数据对象进行有序的迭代操作,可以按顺序处理每一个元素 并且可以根据当前步骤的处理结果决定下一个步骤是否操作 示例: class Life {constructor(data) {this.data datathis.child data.childthis.young data.youngthis.middle data.middlethis.old data.old}/…

外贸人大部分都复工了吧

这几天是属于国家规定的节后上班时间,估计大部分人都已经开始复工了。作为粤西地区小伙伴中的一员,表示虽然身在广州,心却还在高州,毕竟年例在这些天才刚刚开始,我们那边每年最热闹的时候就是年例了! 由于…

零基础入门金融风控-贷款违约预测Task2 数据分析

Task2 数据分析 此部分为零基础入门金融风控的 Task2 数据分析部分,带你来了解数据,熟悉数据,为后续的特征工程做准备,欢迎大家后续多多交流。 赛题:零基础入门数据挖掘 - 零基础入门金融风控之贷款违约 目的&#…

第二件事 在Java 虚拟机 (JVM)跑一个程序

上篇文章写了 在 WINDOWS上 创建了一个 JVM, 好! 现在在这个 Java 虚拟计算机系统上跑一个Java语言编写的小程序; 题目: 用Java语言 编写一个小程序 在Console界面 打印 整数 1-10 (回头了一下源程序,靠,应…

【压缩感知基础】Nyquist采样定理

Nyquist定理,也被称作Nyquist采样定理,是由哈里奈奎斯特在1928年提出的,它是信号处理领域的一个重要基础定理。它描述了连续信号被离散化为数字信号时,采样的要求以避免失真。 数学表示 Nyquist定理的核心内容可以描述如下&…

Reactive到Spring WebFlux的来龙去脉

感谢下述博客作者提供的干货。本文只是做一个整理,归纳,以供自己或者他人学习之用。 一文弄懂 Spring WebFlux 的来龙去脉 - 知乎概述本文将通过对 Reactive 以及相关概念的解释引出 Spring-WebFlux,并通过一些示例向读者解释 基于 Spring-W…

SimpleDateFormat为什么是线程不安全的?

目录 在日常开发中,Date工具类使用频率相对较高,大家通常都会这样写:这很简单啊,有什么争议吗?格式化后出现的时间错乱。看看Java 8是如何解决时区问题的:在处理带时区的国际化时间问题,推荐使用…

知识产权-

知识产权 《中华人民共和国著作权法》 《中华人民共和国著作权法》是为了保护文学、艺术和科学作品作者的著作权及与著作权有关的权益。《中华人民共和国著作权法》中涉及到的作品的概念是文学、艺术和自然科学、社会科学、工程技术等作品,具体来说,这些作品包括以下九类: …

数据仓库选型建议

1 数仓分层 1.1 数仓分层的意义 **数据复用,减少重复开发:**规范数据分层,开发一些通用的中间层数据,能够减少极大的重复计算。数据的逐层加工原则,下层包含了上层数据加工所需要的全量数据,这样的加工方…

c编译器学习02:chibicc文档翻译

目的 先粗略地看一遍作者的书籍。 原文档地址 https://www.sigbus.info/compilerbook# “低レイヤを知りたい人のためのCコンパイラ作成入門” 为想了解底层的人准备的C编译器制作入门 Rui Ueyama ruiucs.stanford.edu 2020-03-16 作者简介 https://www.sigbus.info/ 植山…

【每周AI简讯】OpenAI推出王炸文生视频模型Sora

ChatGPT中文版https://ai7.pro OpenAI推出王炸文生视频模型Sora OpenAI 宣布推出名为 Sora 的新型文本到视频模型。Sora 能根据用户的文本提示,生成长达一分钟的逼真视频。它可以创造出细节丰富的场景、复杂的摄影机运动以及表情丰富的多个角色。Sora 是一种扩散模…

MIT-BEVFusion系列九--CUDA-BEVFusion部署2 create_core之参数设置

目录 加载命令行参数main 函数中的 create_core图像归一化参数体素化参数稀疏卷积网络参数真实世界几何空间参数 (雷达坐标系下体素网格的参数)解码后边界框的参数构建 bevfusion::Core 存储推理时需要的参数 本章开始,我们将一起看CUDA-BEVFusion的代码流程&#x…