数据分析案例-2023年TOP100国外电影数据可视化

 

🤵‍♂️ 个人主页:@艾派森的个人主页

✍🏻作者简介:Python学习者
🐋 希望大家多多支持,我们一起进步!😄
如果文章对你有帮助的话,
欢迎评论 💬点赞👍🏻 收藏 📂加关注+


目录

1.项目背景

2.数据集介绍

3.技术工具

4.导入数据

5.数据可视化

文末推荐与福利


1.项目背景

        随着全球化的深入发展,电影作为一种文化表达和艺术形式,逐渐超越了国界,成为世界各地观众共同欣赏的对象。2023年TOP100国外电影榜单的发布,正是这一发展趋势的体现。为了更好地理解这一现象,我们决定对这100部电影进行数据可视化分析,以期揭示其背后的文化、市场和艺术特征。

        近年来,电影产业的数字化和网络化带来了海量的数据资源,这为我们的研究提供了可能。通过数据挖掘和分析,我们可以了解哪些类型的电影更受欢迎,哪些地区或国家的电影在全球范围内有更大的影响力,以及观众的喜好和行为模式等。

        电影不仅仅是一种娱乐方式,它还是一个反映社会现象、传达价值观和塑造文化认同的重要工具。通过研究TOP100国外电影,我们可以深入了解不同文化背景下的故事、主题和表达方式,从而增进国际间的文化交流和理解。

        此外,电影市场的竞争也日益激烈。通过数据可视化,我们可以分析电影的票房、口碑和影响力之间的关系,为电影产业的决策者提供有价值的参考信息,以促进电影产业的健康和可持续发展。

        总之,2023年TOP100国外电影数据可视化研究旨在利用现代数据分析技术,深入挖掘电影数据的价值,理解电影作为一种全球性文化的现象,增进国际文化交流,并为电影产业的未来发展提供决策支持。

2.数据集介绍

        数据集来源与Kaggle,原始数据集为2023年国外最佳的前100部电影数据,共有如下变量:

列名描述
name电影的标题。
rating给电影的评级。
votes电影获得的票数。
runtime电影的持续时间或运行时间。
genre电影所属的流派。
description电影的简要概述或描述。

3.技术工具

Python版本:3.9

代码编辑器:jupyter notebook

4.导入数据

导入第三方库和数据

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import warnings
warnings.filterwarnings('ignore')
sns.set_style('darkgrid')
plt.style.use('ggplot')df = pd.read_csv('moviesdataset_2023.csv')
df.head()

查看数据大小

查看数据基本信息

# 数据类型转换
df['rating'] = pd.to_numeric(df['rating'], errors='coerce')
df['votes'] = pd.to_numeric(df['votes'].str.replace(',', ''), errors='coerce')
df['runtime'] = pd.to_numeric(df['runtime'].str.replace(' min', ''), errors='coerce')

查看描述性统计

5.数据可视化

import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(10, 6))
sns.histplot(df['rating'].dropna(), bins=10, kde=True, color='skyblue')
plt.title('Distribution of Ratings')
plt.xlabel('Rating')
plt.ylabel('Frequency')
plt.show()

plt.figure(figsize=(10, 6))
sns.scatterplot(x='rating', y='votes', data=df, color='coral')
plt.title('Relationship between Rating and Votes')
plt.xlabel('Rating')
plt.ylabel('Votes')
plt.show()

genres_count = df['genre'].explode().value_counts()
plt.figure(figsize=(12, 8))
genres_count.plot(kind='bar', color='salmon')
plt.title('Movie Genres Count')
plt.xlabel('Genres')
plt.ylabel('Count')
plt.xticks(rotation=45, ha='right')
plt.show()

plt.figure(figsize=(10, 6))
sns.histplot(df['runtime'].dropna(), bins=15, kde=True, color='lightgreen')
plt.title('Distribution of Runtime')
plt.xlabel('Runtime (minutes)')
plt.ylabel('Frequency')
plt.show()

plt.figure(figsize=(12, 8))
sns.pairplot(df[['rating', 'votes', 'runtime']])
plt.suptitle('Pair Plot for Numerical Columns', y=1.02)
plt.show()

plt.figure(figsize=(14, 8))
sns.countplot(y='genre', data=df, order=df['genre'].explode().value_counts().index, palette='viridis')
plt.title('Count of Movies in Each Genre')
plt.xlabel('Count')
plt.ylabel('Genres')
plt.show()

# 相关系数热力图
plt.figure(figsize=(10, 8))
correlation_matrix = df[['rating', 'votes', 'runtime']].corr()
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=.5)
plt.title('Correlation Heatmap')
plt.show()

plt.figure(figsize=(14, 8))
sns.boxplot(x='runtime', y='genre', data=df, palette='Set2')
plt.title('Box Plot of Runtime Across Genres')
plt.xlabel('Runtime (minutes)')
plt.ylabel('Genres')
plt.show()

# 电影描述词云图
from wordcloud import WordCloud
# 将所有描述组合成一个字符串
all_descriptions = ' '.join(df['description'])
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(all_descriptions)
plt.figure(figsize=(12, 6))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title('Word Cloud for Movie Descriptions')
plt.show()

average_rating_by_genre = df.groupby('genre')['rating'].mean().sort_values(ascending=False)
plt.figure(figsize=(14, 8))
sns.barplot(x=average_rating_by_genre.values, y=average_rating_by_genre.index, palette='coolwarm')
plt.title('Average Rating Across Genres')
plt.xlabel('Average Rating')
plt.ylabel('Genres')
plt.show()

文末推荐与福利

《Excel函数与公式应用大全》免费包邮送出3本!

内容简介:      

        本书以 Excel 2021 为蓝本,全面系统地介绍了 Excel 365 & Excel 2021 函数与公式的技术原理、应用技巧与实战案例。内容包括函数与公式基础,文本处理、查找引用、统计求和、Web 类函数、宏表函数、自定义函数、数据库函数等常用函数的应用,以及数组公式、动态数组、多维引用等。

        本书采用循序渐进的方式,由易到难地介绍各个知识点,适合各个水平的 Excel 用户,既可作为初学者的入门指南,又可作为中、高级用户的参考手册。

编辑推荐:     

经典:Excel Home团队策划,多位微软全球MVP通力打造。

升级:上一版长期雄踞Excel函数类图书销量前列,《Excel 2019函数与公式应用大全》重磅升级版。

全面:详尽而又系统地介绍了Excel函数与公式的核心技术。

实战 精选Excel Home的海量案例,零距离接触Excel专家级使用方法。

深入:对一些常常困扰学习者的功能深入揭示背后的原理,让读者知其然,还能知其所以然。

揭秘:独家讲授Excel多项绝密应用,披露Excel专家多年研究成果!

资源:提供视频教学资源及书中相关案例文件,供读者参考练习、快速上手。

  • 抽奖方式:评论区随机抽取3位小伙伴免费送出!
  • 参与方式:关注博主、点赞、收藏、评论区评论“人生苦短,拒绝内卷!”(切记要点赞+收藏,否则抽奖无效,每个人最多评论三次!
  • 活动截止时间:2024-2-23 20:00:00
  • 当当:http://product.dangdang.com/29678919.html

    京东:https://item.jd.com/14360776.html

 名单公布时间:2024-2-23 21:00:00 

 

资料获取,更多粉丝福利,关注下方公众号获取

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/479680.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot+WebSocket实现即时通讯(四)

前言 紧接着上文《SpringBootWebSocket实现即时通讯(三)》 本博客姊妹篇 SpringBootWebSocket实现即时通讯(一)SpringBootWebSocket实现即时通讯(二)SpringBootWebSocket实现即时通讯(三&…

AI时代教师如何修炼内功

AI时代教师如何修炼内功 How Teachers Can Cultivate Their Inner Strength in the Age of AI 在AI时代,教师的角色和职责正在经历前所未有的变革。随着人工智能技术的不断进步,教育领域出现了许多新的工具和方法,这些新发展要求教师提升自身…

【C/C++】实现Reactor高并发服务器 完整版

代码结构 文件介绍 InetAddress.h InetAddress类 ip和端口设置 Socket.h Socket类 设置fd Epoll.h epollfd 管理类 Channel.h Channel类 管理epoll以及对应回调函数实现 EventLoop.h EventLoop事件循环类 TcpServer.h 服务器类 tcpepoll.cpp 主函数 InetAddress.h #if…

Linux用到的命令

1 压缩文件 tar -czf wonderful.tar.gz pm 这个命令的作用就是创建一个以.tar.gz结尾的包文件,然后调用gzip程序将当前目录下的pm文件夹压缩到这个以.tar.gz结尾的文件里面去

普中51单片机学习(二)

51单片机介绍 所需基础知识 基础数模电知识,简单的C语言。 PS:如果有不懂的直接通义千问。。。 什么是单片机 在一片集成电路芯片上集成微处理器、存储器、I/O接口电路,从而构成了单芯片微型计算机,即单片机。 学习方法 多实…

ActiveMQ高可用架构涉及常用功能整理

ActiveMQ高可用架构涉及常用功能整理 1. activemq的集群模式2. 镜像模式高可用系统架构和相关组件2.1 架构说明2.2 相关概念说明2.3 消息模型2.3.1 点对点2.3.2 发布订阅 3. activemq常用命令4. activemq配置集群5. 疑问和思考5.1 activemq的数据删除策略是怎样的?5…

医学生物化学与生物分子学试题及答案,分享几个实用搜题和学习工具 #经验分享#学习方法#其他

大学生的学习生活离不开一些实用的工具,它们能够帮助我们更高效地学习和管理时间。 1.大鱼搜题 这是一个公众号 包括教材课后习题,连冷门网课习题也能找到标准答案,日常练习和备考刷真题都离不开、 下方附上一些测试的试题及答案 1、仓储…

花费200元,我用全志H616和雪糕棒手搓了一台可UI交互的视觉循迹小车

常见的视觉循迹小车都具备有路径识别、轨迹跟踪、转向避障、自主决策等基本功能,如果不采用红外避障的方案,那么想要完全满足以上这些功能,摄像头、电机、传感器这类关键部件缺一不可,由此一来小车成本也就难以控制了。 但如果&a…

JavaWeb学习(1)数据库相关概念,mysql数据库管理系统,SQL语句

数据库相关概念 数据库: 存储数据的仓库,数据是有组织的进行存储 英文:DataBase 简称DB 数据库管理系统: 管理数据库的大型软件 英文:DataBase Management System,简称DBMS SQL 英文:Stry…

Java项目,营销抽奖系统设计实现

作者:小傅哥 博客:https://bugstack.cn 项目:https://gaga.plus 沉淀、分享、成长,让自己和他人都能有所收获!😄 大家好,我是技术UP主,小傅哥。 经过这个假期的嘎嘎卷🧨…

你真的了解—————NumPy吗

🌈个人主页:小田爱学编程 🔥 系列专栏:opencv 🏆🏆关注博主,随时获取更多关于IT的优质内容!🏆🏆 😀欢迎来到小田代码世界~ 😁 喜欢的…

深入探讨JMeter中不为人知的JSONPath用法

在jmeter使用过程中,我们经常会看到接口返回数据类型为application/json,也就时我们常说的json格式。 而在功能测试时,我们经常会要对它的结果进行断言,确认结果是否与预期一致,有时候还会想从结果中提取某个值&#…