738.单调递增的数字
1、题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
2、文章讲解:代码随想录
3、题目:
给定一个非负整数 N,找出小于或等于 N 的最大的整数,同时这个整数需要满足其各个位数上的数字是单调递增。
(当且仅当每个相邻位数上的数字 x 和 y 满足 x <= y 时,我们称这个整数是单调递增的。)
示例 1:
- 输入: N = 10
- 输出: 9
示例 2:
- 输入: N = 1234
- 输出: 1234
示例 3:
- 输入: N = 332
- 输出: 299
说明: N 是在 [0, 10^9] 范围内的一个整数。
4、视频讲解:
贪心算法,依然是判断重叠区间 | LeetCode:435.无重叠区间_哔哩哔哩_bilibili
5、思路:
题目要求小于等于N的最大单调递增的整数,那么拿一个两位的数字来举例。
例如:98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]--,然后strNum[i]给为9,这样这个整数就是89,即小于98的最大的单调递增整数。
这一点如果想清楚了,这道题就好办了。
此时是从前向后遍历还是从后向前遍历呢?
从前向后遍历的话,遇到strNum[i - 1] > strNum[i]的情况,让strNum[i - 1]减一,但此时如果strNum[i - 1]减一了,可能又小于strNum[i - 2]。
这么说有点抽象,举个例子,数字:332,从前向后遍历的话,那么就把变成了329,此时2又小于了第一位的3了,真正的结果应该是299。
那么从后向前遍历,就可以重复利用上次比较得出的结果了,从后向前遍历332的数值变化为:332 -> 329 -> 299
确定了遍历顺序之后,那么此时局部最优就可以推出全局,找不出反例,试试贪心。
总结
本题只要想清楚个例,例如98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]减一,strNum[i]赋值9,这样这个整数就是89。就可以很自然想到对应的贪心解法了。
想到了贪心,还要考虑遍历顺序,只有从后向前遍历才能重复利用上次比较的结果。
最后代码实现的时候,也需要一些技巧,例如用一个flag来标记从哪里开始赋值9。
1、将整数转换为字符串。
2、将字符串转换为字符数组。
3、从字符串的倒数第二个字符开始,遍历字符数组。
4、如果当前字符大于下一个字符,则将当前字符减1,并记录当前位置作为新的起始位置。
5、从新的起始位置开始,将字符数组中的字符全部设置为9。
6、将字符数组转换为整数并返回
class Solution {public int monotoneIncreasingDigits(int n) {String s = String.valueOf(n);char[] chars = s.toCharArray();int start = s.length();for (int i = s.length() - 2; i >= 0; i--) {if (chars[i] > chars[i + 1]) {chars[i]--;start = i + 1;}}for (int i = start; i < s.length(); i++) {chars[i] = '9';}return Integer.parseInt(String.valueOf(chars));}
}
968.监控二叉树
1、题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
2、文章讲解:代码随想录
3、题目:
给定一个二叉树,我们在树的节点上安装摄像头。
节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。
计算监控树的所有节点所需的最小摄像头数量。
示例 1:
- 输入:[0,0,null,0,0]
- 输出:1
- 解释:如图所示,一台摄像头足以监控所有节点。
示例 2:
- 输入:[0,0,null,0,null,0,null,null,0]
- 输出:2
- 解释:需要至少两个摄像头来监视树的所有节点。 上图显示了摄像头放置的有效位置之一。
提示:
- 给定树的节点数的范围是 [1, 1000]。
- 每个节点的值都是 0。
4、视频链接:
贪心算法,二叉树与贪心的结合,有点难...... LeetCode:968.监督二叉树_哔哩哔哩_bilibili
5、思路:
这道题目首先要想,如何放置,才能让摄像头最小的呢?
从题目中示例,其实可以得到启发,我们发现题目示例中的摄像头都没有放在叶子节点上!
这是很重要的一个线索,摄像头可以覆盖上中下三层,如果把摄像头放在叶子节点上,就浪费的一层的覆盖。
所以把摄像头放在叶子节点的父节点位置,才能充分利用摄像头的覆盖面积。
那么有同学可能问了,为什么不从头结点开始看起呢,为啥要从叶子节点看呢?
因为头结点放不放摄像头也就省下一个摄像头, 叶子节点放不放摄像头省下了的摄像头数量是指数阶别的。
所以我们要从下往上看,局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,整体最优:全部摄像头数量所用最少!
局部最优推出全局最优,找不出反例,那么就按照贪心来!
此时,大体思路就是从低到上,先给叶子节点父节点放个摄像头,然后隔两个节点放一个摄像头,直至到二叉树头结点。
此时这道题目还有两个难点:
- 二叉树的遍历
- 如何隔两个节点放一个摄像头
#确定遍历顺序
在二叉树中如何从低向上推导呢?
可以使用后序遍历也就是左右中的顺序,这样就可以在回溯的过程中从下到上进行推导了。
后序遍历代码如下:
int traversal(TreeNode* cur) {// 空节点,该节点有覆盖if (终止条件) return ;int left = traversal(cur->left); // 左int right = traversal(cur->right); // 右逻辑处理 // 中return ;
}
注意在以上代码中我们取了左孩子的返回值,右孩子的返回值,即left 和 right, 以后推导中间节点的状态
#如何隔两个节点放一个摄像头
此时需要状态转移的公式,大家不要和动态的状态转移公式混到一起,本题状态转移没有择优的过程,就是单纯的状态转移!
来看看这个状态应该如何转移,先来看看每个节点可能有几种状态:
有如下三种:
- 该节点无覆盖
- 本节点有摄像头
- 本节点有覆盖
我们分别有三个数字来表示:
- 0:该节点无覆盖
- 1:本节点有摄像头
- 2:本节点有覆盖
大家应该找不出第四个节点的状态了。
一些同学可能会想有没有第四种状态:本节点无摄像头,其实无摄像头就是 无覆盖 或者 有覆盖的状态,所以一共还是三个状态。
因为在遍历树的过程中,就会遇到空节点,那么问题来了,空节点究竟是哪一种状态呢? 空节点表示无覆盖? 表示有摄像头?还是有覆盖呢?
回归本质,为了让摄像头数量最少,我们要尽量让叶子节点的父节点安装摄像头,这样才能摄像头的数量最少。
那么空节点不能是无覆盖的状态,这样叶子节点就要放摄像头了,空节点也不能是有摄像头的状态,这样叶子节点的父节点就没有必要放摄像头了,而是可以把摄像头放在叶子节点的爷爷节点上。
所以空节点的状态只能是有覆盖,这样就可以在叶子节点的父节点放摄像头了
接下来就是递推关系。
那么递归的终止条件应该是遇到了空节点,此时应该返回2(有覆盖),原因上面已经解释过了。
代码如下:
// 空节点,该节点有覆盖
if (cur == NULL) return 2;
递归的函数,以及终止条件已经确定了,再来看单层逻辑处理。
主要有如下四类情况:
- 情况1:左右节点都有覆盖
左孩子有覆盖,右孩子有覆盖,那么此时中间节点应该就是无覆盖的状态了。
如图:
代码如下:
// 左右节点都有覆盖
if (left == 2 && right == 2) return 0;
- 情况2:左右节点至少有一个无覆盖的情况
如果是以下情况,则中间节点(父节点)应该放摄像头:
- left == 0 && right == 0 左右节点无覆盖
- left == 1 && right == 0 左节点有摄像头,右节点无覆盖
- left == 0 && right == 1 左节点有无覆盖,右节点摄像头
- left == 0 && right == 2 左节点无覆盖,右节点覆盖
- left == 2 && right == 0 左节点覆盖,右节点无覆盖
这个不难理解,毕竟有一个孩子没有覆盖,父节点就应该放摄像头。
此时摄像头的数量要加一,并且return 1,代表中间节点放摄像头。
代码如下:
if (left == 0 || right == 0) {result++;return 1;
}
- 情况3:左右节点至少有一个有摄像头
如果是以下情况,其实就是 左右孩子节点有一个有摄像头了,那么其父节点就应该是2(覆盖的状态)
- left == 1 && right == 2 左节点有摄像头,右节点有覆盖
- left == 2 && right == 1 左节点有覆盖,右节点有摄像头
- left == 1 && right == 1 左右节点都有摄像头
代码如下:
if (left == 1 || right == 1) return 2;
1
从这个代码中,可以看出,如果left == 1, right == 0 怎么办?其实这种条件在情况2中已经判断过了,如图:
这种情况也是大多数同学容易迷惑的情况。
- 情况4:头结点没有覆盖
以上都处理完了,递归结束之后,可能头结点 还有一个无覆盖的情况,如图:
所以递归结束之后,还要判断根节点,如果没有覆盖,result++,代码如下:
int minCameraCover(TreeNode* root) {result = 0;if (traversal(root) == 0) { // root 无覆盖result++;}return result;
}
以上四种情况我们分析完了,
总结
本题的难点首先是要想到贪心的思路,然后就是遍历和状态推导。
在二叉树上进行状态推导,其实难度就上了一个台阶了,需要对二叉树的操作非常娴熟。
这道题目是名副其实的hard,大家感受感受。
class Solution {int res = 0;public int minCameraCover(TreeNode root) {// 对根节点的状态做检验,防止根节点是无覆盖状态 .if (minCame(root) == 0) {res++;}return res;}/*** 节点的状态值:* 0 表示无覆盖* 1 表示 有摄像头* 2 表示有覆盖* 后序遍历,根据左右节点的情况,来判读 自己的状态*/public int minCame(TreeNode root) {if (root == null) {// 空节点默认为 有覆盖状态,避免在叶子节点上放摄像头return 2;}int left = minCame(root.left);int right = minCame(root.right);// 如果左右节点都覆盖了的话, 那么本节点的状态就应该是无覆盖,没有摄像头if (left == 2 && right == 2) {//(2,2)return 0;} else if (left == 0 || right == 0) {// 左右节点都是无覆盖状态,那 根节点此时应该放一个摄像头// (0,0) (0,1) (0,2) (1,0) (2,0)// 状态值为 1 摄像头数 ++;res++;return 1;} else {// 左右节点的 状态为 (1,1) (1,2) (2,1) 也就是左右节点至少存在 1个摄像头,// 那么本节点就是处于被覆盖状态return 2;}}
}
总结:
在贪心系列开篇词关于贪心算法,你该了解这些!(opens new window)中,我们就讲解了大家对贪心的普遍疑惑。
- 贪心很简单,就是常识?
跟着一起刷题的录友们就会发现,贪心思路往往很巧妙,并不简单。
- 贪心有没有固定的套路?
贪心无套路,也没有框架之类的,需要多看多练培养感觉才能想到贪心的思路。
- 究竟什么题目是贪心呢?
Carl个人认为:如果找出局部最优并可以推出全局最优,就是贪心,如果局部最优都没找出来,就不是贪心,可能是单纯的模拟。(并不是权威解读,一家之辞哈)
但我们也不用过于强调什么题目是贪心,什么不是贪心,那就太学术了,毕竟学会解题就行了。
- 如何知道局部最优推出全局最优,有数学证明么?
在做贪心题的过程中,如果再来一个数据证明,其实没有必要,手动模拟一下,如果找不出反例,就试试贪心。面试中,代码写出来跑过测试用例即可,或者自己能自圆其说理由就行了
就像是 要用一下 1 + 1 = 2,没有必要再证明一下 1 + 1 究竟为什么等于 2。(例子极端了点,但是这个道理)
相信大家读完关于贪心算法,你该了解这些!(opens new window),就对贪心有了一个基本的认识了。
贪心简单题
以下三道题目就是简单题,大家会发现贪心感觉就是常识。是的,如下三道题目,就是靠常识,但我都具体分析了局部最优是什么,全局最优是什么,贪心也要贪的有理有据!
- 贪心算法:分发饼干(opens new window)
- 贪心算法:K次取反后最大化的数组和(opens new window)
- 贪心算法:柠檬水找零(opens new window)
#贪心中等题
贪心中等题,靠常识可能就有点想不出来了。开始初现贪心算法的难度与巧妙之处。
- 贪心算法:摆动序列(opens new window)
- 贪心算法:单调递增的数字(opens new window)
#贪心解决股票问题
大家都知道股票系列问题是动规的专长,其实用贪心也可以解决,而且还不止就这两道题目,但这两道比较典型,我就拿来单独说一说
- 贪心算法:买卖股票的最佳时机II(opens new window)
- 贪心算法:买卖股票的最佳时机含手续费(opens new window)本题使用贪心算法比较绕,建议后面学习动态规划章节的时候,理解动规就好
#两个维度权衡问题
在出现两个维度相互影响的情况时,两边一起考虑一定会顾此失彼,要先确定一个维度,再确定另一个一个维度。
- 贪心算法:分发糖果(opens new window)
- 贪心算法:根据身高重建队列(opens new window)
在讲解本题的过程中,还强调了编程语言的重要性,模拟插队的时候,使用C++中的list(链表)替代了vector(动态数组),效率会高很多。
所以在贪心算法:根据身高重建队列(续集)(opens new window)详细讲解了,为什么用list(链表)更快!
大家也要掌握自己所用的编程语言,理解其内部实现机制,这样才能写出高效的算法!
#贪心难题
这里的题目如果没有接触过,其实是很难想到的,甚至接触过,也一时想不出来,所以题目不要做一遍,要多练!
#贪心解决区间问题
关于区间问题,大家应该印象深刻,有一周我们专门讲解的区间问题,各种覆盖各种去重。
- 贪心算法:跳跃游戏(opens new window)
- 贪心算法:跳跃游戏II(opens new window)
- 贪心算法:用最少数量的箭引爆气球(opens new window)
- 贪心算法:无重叠区间(opens new window)
- 贪心算法:划分字母区间(opens new window)
- 贪心算法:合并区间(opens new window)
#其他难题
贪心算法:最大子序和(opens new window)其实是动态规划的题目,但贪心性能更优,很多同学也是第一次发现贪心能比动规更优的题目。
贪心算法:加油站(opens new window)可能以为是一道模拟题,但就算模拟其实也不简单,需要把while用的很娴熟。但其实是可以使用贪心给时间复杂度降低一个数量级。
最后贪心系列压轴题目贪心算法:我要监控二叉树!(opens new window),不仅贪心的思路不好想,而且需要对二叉树的操作特别娴熟,这就是典型的交叉类难题了。