YOLOv9这么快就来了,赶紧学起来~

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】
35.【基于YOLOv8深度学习的智能车牌检测与识别系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~

《------正文------》

在这里插入图片描述
在论文中,提出使用PGI(可编程梯度信息)来解决信息瓶颈问题以及深度监督机制不适用于轻量级神经网络的问题。我们设计了GELAN(通用高效层聚合网络),一种高效且轻量的神经网络。在目标检测方面,GELAN在不同的计算模块和深度设置下都有稳定的强大性能。它确实可以广泛扩展为适用于各种推理设备的模型。针对上述两个问题,PGI的引入使得轻量模型和深度模型都能在准确性上实现显著提升。结合PGI和GELAN设计的YOLOv9展现了强劲的竞争力。其卓越的设计使得深度模型相比于YOLOv8,参数数量减少了49%,计算量减少了43%,但在MS COCO数据集上仍有0.6%的AP(平均精度)提升。

简介

论文地址:https://arxiv.org/abs/2402.13616
代码地址:https://github.com/WongKinYiu/yolov9

在这里插入图片描述
摘要:当今的深度学习方法侧重于如何设计最适合的目标函数,以使模型的预测结果尽可能接近真实情况。同时,还需要设计能够促进获取足够预测信息的适当架构。现有方法忽视了一个事实:当输入数据经过逐层的特征提取和空间转换时,大量信息会丢失。本文将深入探讨数据在深度网络中传输时数据丢失的重要问题,即信息瓶颈和可逆函数问题。我们提出了可编程梯度信息(PGI)的概念,以应对深度网络要实现多个目标所需的各种变化。PGI可以为目标任务提供完整的输入信息以计算目标函数,从而获得可靠的梯度信息来更新网络权重。另外,我们还设计了一种新的轻量级网络架构——通用高效层聚合网络(GELAN),基于梯度路径规划。GELAN的架构证实了PGI在轻量级模型上取得了优越的结果。我们在基于MS COCO数据集的目标检测上验证了所提出的GELAN和PGI。结果表明,GELAN只使用传统的卷积运算符就比基于深度卷积开发的最先进方法实现了更好的参数利用率。PGI可以用于从轻量型到大型的各种模型。它可以用来获取完整的信息,使得从零开始训练的模型可以取得比使用大型数据集预训练的最先进模型更好的结果。

核心网络结构

在这里插入图片描述
YOLOv9网络结构配置文件:

# YOLOv9# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []],  # conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3# conv down[-1, 1, Conv, [256, 3, 2]],  # 4-P3/8# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5# conv down[-1, 1, Conv, [512, 3, 2]],  # 6-P4/16# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7# conv down[-1, 1, Conv, [512, 3, 2]],  # 8-P5/32# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 10# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)# conv-down merge[-1, 1, Conv, [256, 3, 2]],[[-1, 13], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)# conv-down merge[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)# routing[5, 1, CBLinear, [[256]]], # 23[7, 1, CBLinear, [[256, 512]]], # 24[9, 1, CBLinear, [[256, 512, 512]]], # 25# conv down[0, 1, Conv, [64, 3, 2]],  # 26-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 27-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28# conv down fuse[-1, 1, Conv, [256, 3, 2]],  # 29-P3/8[[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30  # elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31# conv down fuse[-1, 1, Conv, [512, 3, 2]],  # 32-P4/16[[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33 # elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34# conv down fuse[-1, 1, Conv, [512, 3, 2]],  # 35-P5/32[[25, -1], 1, CBFuse, [[2]]], # 36# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37# detect[[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]

性能对比

在这里插入图片描述
在这里插入图片描述
从对比曲线可以发现,无论是从参数到校和计算来那个上看,对比已有的SOTA模型,YOLOv9都还是有不小的优势的。

论文主要亮点:

  1. 从可逆函数的角度对现有的深度神经网络架构进行了理论分析,并通过这一过程成功解释了过去难以解释的许多现象。我们还基于这一分析设计了PGI和辅助可逆分支,并取得了出色的结果。
  2. 设计的PGI解决了深度监督只能用于极深神经网络架构的问题,因此允许新的轻量架构真正应用于日常生活中。
  3. 设计的GELAN仅使用传统卷积就比基于最先进技术的深度卷积设计实现了更高的参数利用率,同时展现了轻、快、准的巨大优势。
  4. 结合所提出的PGI和GELAN,YOLOv9在MS COCO数据集上的目标检测性能在各个方面大大超越了现有的实时目标检测器。

有网友表示,YOLOv8还没学好,YOLOv9就出来了。。。。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/485308.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Stable Diffusion 模型的概念、类型、下载、安装、使用

本文收录于《AI绘画从入门到精通》专栏,专栏总目录:点这里。 大家好,我是水滴~~ 我们在《Stable Diffusion WebUI 界面介绍》 时,第一个就讲到了 Stable Diffusion 模型,那么这个模型是什么?该从哪儿下载&…

python + selenium/appnium

Selenium 的自动化原理: selenium 自动化流程: 自动化程序调用Selenium 客户端库函数(比如点击按钮元素)客户端库会发送Selenium 命令 给浏览器的驱动程序浏览器驱动程序接收到命令后 ,驱动浏览器去执行命令浏览器执行命令浏览器驱动程序获取命令执行的…

#LLM入门|Prompt#1.7_文本拓展_Expanding

输入简短文本,生成更加丰富的长文。 “温度”(temperature):控制文本生成的多样性。 一、定制客户邮件 根据客户的评价和其中的情感倾向,使用大语言模型针对性地生成回复邮件。将大大提升客户满意度。 # 我们可以在…

【算法与数据结构】417、LeetCode太平洋大西洋水流问题

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析:题目要求雨水既能流向太平洋也能流向大西洋的网格。雨水流向取决于网格的高度。一个比较直接的方式是对…

c++实现栈和队列类

c实现栈和队列类 栈(Stack)Stack示意图Stack.cpp 队列(queue)queue 示意图queue.cpp 栈(Stack) Stack示意图 Stack.cpp #pragma once #include "ListStu.cpp"template<typename T> class Stack { public: /* * void push(T& tDate)* 参数一 &#xff1a;…

SQL库操作

1、创建数据库 概念 创建数据库&#xff1a;根据项目需求创建一个存储数据的仓库 使用create database 数据库名字创建 数据库层面可以指定字符集:charset/character set 数据库层面可以指定校对集:collate 创建数据库会在磁盘指定存放处产生一个文件夹 创建语法 create …

mysql优化指南之优化篇

二、优化 现在的理解数据库优化有四个维度&#xff0c;分别是&#xff1a; 硬件升级、系统配置、表结构设计、SQL语句及索引。 那优化的成本和效果分别如下&#xff1a; 优化成本&#xff1a;硬件升级>系统配置>表结构设计>SQL语句及索引。 优化效果&#xff1a;…

【MATLAB GUI】 5. 图像处理菜单(菜单编辑器)

看B站up主freexyn的freexyn编程实例视频教程系列36Matlab GUI的学习笔记 任务要求设计一个图像处理菜单&#xff0c;实现图像的打开导入、灰度处理、存储等功能 修改过文件名&#xff0c;所以运行的时候会有一点点报错&#xff0c;但是不影响运行 打开工具栏下边的菜单编辑器…

【数据结构】链式队列

链式队列实现&#xff1a; 1.创建一个空队列 2.尾插法入队 3.头删法出队 4.遍历队列 一、main函数 #include <stdio.h> #include "./3.linkqueue.h" int main(int…

【智慧零售】门店管理设备解决方案,为企业数字化运营升级赋能

2023年我国零售总额超47万亿元&#xff0c;广阔的市场提供了更多机遇&#xff0c;同时随着日趋激烈的竞争&#xff0c;企业也正面临着一些挑战&#xff1a;如何才能有效提升门店生产效率&#xff1f;降低门店运营成本&#xff1f;提高市场竞争力&#xff1f; 零售企业认识到通…

算法——模拟

1. 什么是模拟算法&#xff1f; 官方一点来说 模拟算法&#xff08;Simulation Algorithm&#xff09;是一种通过模拟现实或抽象系统的运行过程来研究、分析或解决问题的方法。它通常涉及创建一个模型&#xff0c;模拟系统中的各种事件和过程&#xff0c;以便观察系统的行为&a…

《VitePress 简易速速上手小册》第8章 安全性与部署(2024 最新版)

文章目录 8.1 安全最佳实践8.1.1 基础知识点解析8.1.2 重点案例&#xff1a;个人博客8.1.3 拓展案例 1&#xff1a;在线商店8.1.4 拓展案例 2&#xff1a;企业网站 8.2 部署到 GitHub Pages 和其他平台8.2.1 基础知识点解析8.2.2 重点案例&#xff1a;个人博客部署到 GitHub Pa…