ChatGPT回答模式

        你发现了吗,ChatGPT的回答总是遵循这些类型方式。

目录

1.解释模式

2.类比模式

3.列举模式

4.限制模式

5.转换模式        

6.增改模式

7.对比模式

8.翻译模式

9.模拟模式

10.推理模式


1.解释模式

        ChatGPT 在回答问题或提供信息时,不仅仅给出直接的答案或结果,而是进一步提供背后的逻辑、原理或原因,这种模式特别适用于当用户寻求对某个概念、现象或答案的深入理解时。在解释模式下,ChatGPT 会尽量使用清晰、易懂的语言,详细阐述问题的答案是如何得出的。

2.类比模式

        ChatGPT 利用用户熟悉的概念或情境来解释一个较为陌生或复杂的概念。通过这种方式,ChatGPT 帮助用户通过已有的知识框架快速理解新的信息,实现“以旧学新”。这种方法特别有效,因为它建立在人类理解世界的一个基本心理机制上——通过比较和关联来学习新事物,如图 2-2 所示,我先使用一个我比较熟悉的场景,提出问题,接下来我再问出另一个节日,但并没有说明我要问什么东西,但是 ChatGPT 会按照解释定义,说明活动习俗的顺序阐述。

3.列举模式

        这是最常见的回答类型,在之前类比的案例中其实也包含了列举,当用户需要探索或了解某个主题下的各种事物、属性、特点、选项等时,ChatGPT 会提供一个详尽的列表来满足查询需求。这种模式适用于多种情境,比如进行创意思考、市场调研、学术研究,或是简单地扩展知识面。罗列可以帮助用户发现并填补自己对某个领域知识的空白,增加对该领域的全面理解,通过比较列举出的各个选项的特点和属性,用户可以做出更加信息充分的决策。

4.限制模式

        明确用户希望或需要遵守的约束条件,以确保输出满足一定的要求或适应特定的应用场景。这些限制可能涉及内容的长度、风格、主题范围、敏感话题的过滤、数据隐私和安全、遵守知识产权和版权法律、以及确保内容的语言和文化适应性等方面。通过明确这些限制,用户可以精确控制 ChatGPT 的回答,使其更加贴合特定的需求和标准。

5.转换模式        

        ChatGPT 可以帮助用户将原始信息或混乱的内容重新组织和格式化,使之更加清晰、有序,或更适合特定的用途。这种模式特别适合于处理大量数据、信息摘要、内容改写等场景,主要价值在于提高信息的可读性、易用性和适用性。转化可以包括但不限于数据整理、内容摘要、格式转换、风格改写、视觉化表示等,如下图将一段文字整理成可视化图表格式,或者将文字形容转化为图片。

6.增改模式

        用户可以指导 ChatGPT 对已生成的内容进行细致的调整,包括增加更多信息、删除不必要的部分或修改现有内容以改进准确性、清晰度或风格。原始内容概述了一个主题,但缺乏具体信息,可以要求增加相关的数据、例子或解释,使内容更加丰富和有说服力。这种模式特别适用于迭代改进文本,确保最终产出更加符合特定的需求或标准。

7.对比模式

        ChatGPT 被引导进行两个或多个事物、概念、理论、方法等之间的比较和对照分析,这种模式涉及到识别和讨论它们之间的相似之处和不同之处,有助于深入理解每个事物的独特性质和相对优劣。对比分析是一种强有力的思考和学习工具,特别适用于决策制定、问题解析、批判性思维和学术研究等场景。

8.翻译模式

        类似于转化,ChatGPT 的任务是将一种语言中的文本准确地转换成另一种语言,同时尽量保留原文的意思、语气和文化背景。翻译不仅仅是字面意义上的转换,还包括对语境、俚语、习语以及文化差异的理解和适应。这种转化过程要求对涉及的语言有深入的了解,包括语法规则、词汇用法和表达习惯等。

9.模拟模式

        ChatGPT 可以被指导去模拟或重现某个过程、对话、现象或思维模式。这种模式可以应用于多种场景,包括模拟特定人物的对话风格、复现科学实验的步骤、展示问题解决过程或重现历史事件的经过。

10.推理模式

        ChatGPT 利用现有的信息或数据来进行逻辑推断,从而揭示未明确表述的事实、原理或逻辑关系。这种模式涉及到分析、批判性思维和逻辑推演,能够帮助用户深入理解问题、解决问题或发现新的知识点。推理过程可以基于归纳推理、演绎推理或类比推理等不同的逻辑方法。

        提示工程(Prompt Engineering)是一种技术,涉及精心设计和优化与人工智能(AI)模型(如 ChatGPT)的交互提示,以获得更准确、相关或创造性的输出。这一过程对于最大化 AI 模型的效能至关重要,特别是在自然语言处理和生成任务中。有效的提示工程可以显著提高 AI 在各种应用中的表现,包括文本生成、数据分析、创意写作等,利用上下文交互不断完善问题以得到更好的答案,如上的所有提示模式都可以互相组合利用,把他们两两组合或者三三组合使用,在不断衍生出的答案结果中持续优化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/485339.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Sora - 探索AI视频模型的无限可能-官方报告解读与思考

一、引言 最近SORA火爆刷屏,我也忍不住找来官方报告分析了一下,本文将深入探讨OpenAI最新发布的Sora模型。Sora模型不仅仅是一个视频生成器,它代表了一种全新的数据驱动物理引擎,能够在虚拟世界中模拟现实世界的复杂现象。本文将重…

基于springboot+vue的中小型医院网站(前后端分离)

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战,欢迎高校老师\讲师\同行交流合作 ​主要内容:毕业设计(Javaweb项目|小程序|Pyt…

Flutter常用命令,持续更新

目录 前言 Flutter 常用命令 Dart 常用命令 adb 常用命令(用于 Android 开发) 前言 当在开发Flutter项目时,熟悉一些常用的命令是非常重要的。这些命令可以帮助你执行各种任务,从构建应用程序到调试和测试。以下是一些Flutte…

RabbitMQ开启MQTT协议支持

1)RabbitMQ启用MQTT插件 rootmq:/# rabbitmq-plugins enable rabbitmq_mqtt Enabling plugins on node rabbitmq: rabbitmq_mqtt The following plugins have been configured:rabbitmq_managementrabbitmq_management_agentrabbitmq_mqttrabbitmq_web_dispatch Ap…

CleanMyMacX4.15破解版下载安装包步骤教程

安装CleanMyMac X的步骤如下: 在中文网站上进行安装包的免费下载。找到下载完成的安装包,然后双击打开。用鼠标拖动CleanMyMac X应用程序的图标,将其拖放至右侧的“应用程序”文件夹内。稍等片刻,CleanMyMac X应用程序就会出现在…

(提供数据集下载)基于大语言模型LangChain与ChatGLM3-6B本地知识库调优:数据集优化、参数调整、Prompt提示词优化实战

文章目录 (提供数据集下载)基于大语言模型LangChain与ChatGLM3-6B本地知识库调优:数据集优化、参数调整、提示词Prompt优化本地知识库目标操作步骤问答测试的预设问题原始数据情况数据集优化:预处理,先后准备了三份数据…

微服务-微服务API网关Spring-clould-gateway实战

1. 需求背景 在微服务架构中,通常一个系统会被拆分为多个微服务,面对这么多微服务客户端应该如何去调用呢? 如果根据每个微服务的地址发起调用,存在如下问题: 1.客户端多次请求不同的微服务,会增加客户端…

Linux使用C语言获取进程信息

Linux使用C语言获取进程信息 Author: OnceDay Date: 2024年2月22日 漫漫长路,才刚刚开始… 全系列文章可查看专栏: Linux实践记录_Once_day的博客-CSDN博客 参考文档: Linux proc目录详解_/proc/mounts-CSDN博客Linux下/proc目录介绍 - 知乎 (zhihu.com)Linux内…

大语言模型的开山之作—探秘GPT系列:GPT-1-GPT2-GPT-3的进化之路

模型模型参数创新点评价GPT1预训练微调, 创新点在于Task-specific input transformations。GPT215亿参数预训练PromptPredict, 创新点在于Zero-shotZero-shot新颖度拉满,但模型性能拉胯GPT31750亿参数预训练PromptPredict, 创新点…

openssl3.2 - 编译 - zlib.dll不要使用绝对路径

文章目录 openssl3.2 - 编译 - 编译时的动态库zlib.dll不要使用绝对路径概述测试zlib特性在安装好的目录中是否正常笔记70-test_tls13certcomp.t80-test_cms.t对测试环境的猜测从头再编译测试安装一次测试一下随便改变位置的openssl用到zlib时是否好使测试一下随便改变位置的op…

工信部等九部门:打造一批实现制造过程数字孪生的数字化转型标杆工厂

“人工智能技术与咨询” 发布 培育一批科技领军人才、青年骨干人才,以及一批既懂原材料工业又懂数字技术的复合型人才。依托职业教育提质培优行动计划,加速培育数字化转型急需紧缺的工程师和技术技能人才。支持引进数字化转型海外高端人才。 &#xff…

Codeforces Round 927 (Div. 3)

F. Feed Cats 题目大意 给一长度为的数轴,个区间在数轴上选取一些点作为特殊点在满足个区间中,每个区间内只能有一个特殊点问最多能选多少个特殊点 解题思路 对于每个点有放或不放两种状态考虑表示位置可能放或不放的最优结果若不放,若放…