核密度分析

一.算法介绍

核密度估计(Kernel Density Estimation)是一种用于估计数据分布的非参数统计方法。它可以用于多种目的和应用,包括:

  • 数据可视化:核密度估计可以用来绘制平滑的密度曲线或热力图,从而直观地表示数据的分布情况。它可以帮助我们观察数据集中的高密度区域、低密度区域以及变化趋势。
  • 异常检测:通过核密度估计,我们可以识别数据中的异常点或离群值。异常点通常表现为低密度区域或与其他数据点明显不同的区域。
  • 概率密度计算:核密度估计可以用于计算给定数值的概率密度。通过将新数据点带入核密度估计函数,可以估计出该点在数据分布中的密度。
  • 模式识别:核密度估计可以用于识别数据中的模式或聚类。通过观察密度最高的区域,可以推断数据的聚类情况或潜在的模式。
  • 预测建模:核密度估计可以用于构建概率模型,进而进行预测。例如,在分类问题中,可以使用核密度估计来估计每个类别的概率密度,然后根据新的数据点所属的密度来进行分类预测。

根据具体的应用需求,我们可以灵活地使用核密度估计来分析和理解数据集的特征和结构,可能的用途包括针对社区规划分析房屋密度或犯罪行为,或探索道路或公共设施管线如何影响野生动物栖息地。
每个点位可以设置 weight 字段赋予某些要素比其他要素更大的权重,该字段还允许使用一个点表示多个观察对象。例如,一个地址可以表示一栋六单元的公寓,或者在确定总体犯罪率时可赋予某些罪行比其他罪行更大的权重。

二.算法计算原理

本算法以四次核函数为基础,四次核函数的特点是具有平滑的曲线形状,具有较宽的窗口,对数据点的贡献在距离较远时会迅速减小。由于其平滑性和较大的支持范围,四次核函数在核密度估计中被广泛使用。

在这里插入图片描述

在核密度估计中,通过将核函数应用于每个数据点,并对所有数据点的贡献进行求和,可以计算出在每个位置上的密度估计值。四次核函数的结果可视为在核密度估计中每个位置的密度贡献权重。较大的结果表示该位置的密度较高,而较小或接近零的结果表示该位置的密度较低。
本算法中主要利用核密度公式计算空间范围内的核密度值,根据核密度值生成 png 或 jpg 格式的热力图,或者将整个空间切割成网格,用网格中心点参与核密度计算生成 geojson 文件,以供进一步空间探索分析。

    /***  计算单个核密度* @param radius 半径* @param dist 两点的距离* @param weight 权重* @return*/public static double computeKernel(double radius, double dist, double weight){return  (3 / Math.PI) * weight * Math.pow((1 - Math.pow(dist / radius,2)), 2);}

创新性说明:

  • 1.算法会自适应数据中的空间点位范围,此范围可根据参数bufferSize 设置缓冲区扩展,以获取数据范围外的点参与计算。
  • 2.根据空间范围每隔特定步长创建虚拟点位或划分网格,灵活性较高,步长越小则结果在地图分布上的精度越高,步长参数step(米) 可选,如果没有设置, 则默认在空间范围内自适应创建一百万左右虚拟点或网格。
  • 3.采用多线程的方式进行核密度计算,速度更快。
  • 4.可将结果值进行归一化处理,核密度计算出来的结果值主要用于观察数据分布,但是各个结果值之间相差范围较大,不易观察数据分布,归一化后能更清晰观察不同区域间的分布情况。
  • 5.可根据核密度值的大小根据不同需求生成热力图或 geojson 文件。可在geojson文件上做进一步探索。

三.算法程序

1. 核心流程代码

从csv中获取源数据点信息, 获取坐标范围,如果需要缓冲区, 则设置缓冲区, 获取步长长度(默认一百万个像素点或网格),然后根据核密度信息创建图片或geojson

        // 输入文件路径String inputPath ="D:\\测试数据.csv";// 输出文件路径String outPath ="D:\\测试数据.geojson";// String outPath ="D:\\测试数据.jpg";// 经度字段String lonKey = "lon";// 纬度字段String latKey = "lat";// 权重字段String weightKey = "";// 影响半径double radius = 300.0;// 缓冲区double bufferSize = 0.1;// 生成的网格长度(单位: 米)int step = 0;int type;if (outPath.endsWith("png") || outPath.endsWith("jpg")){type = 0;}else if (outPath.endsWith("geojson")){type = 1;}else {throw new RuntimeException("输出文件格式只能是 png、jpg 或者 geojson");}// 从csv中获取源数据点信息List<EntryPoint> entryPoints = EntryPoint.formatToEntryPoints(inputPath, lonKey, latKey, weightKey, radius);// 获取坐标范围double[] coordsScope = KernelUtils.getCoordsScope(entryPoints);// 如果需要缓冲区, 则设置缓冲区if (bufferSize != 0){coordsScope = KernelUtils.getBufferScope(coordsScope[0], coordsScope[1], coordsScope[2], coordsScope[3], bufferSize);}// 获取默认的步长长度, 默认一百万个像素点或网格if (step ==0){step = KernelUtils.getDefaultSize(coordsScope);}// 根据核密度信息创建图片或geojsonkernel(coordsScope, entryPoints, step, radius, type, outPath);
    /*** 核密度方法* @param coordsScope 坐标范围* @param entryPoints  从csv中获取源数据点信息* @param step 步长长度* @param radius 影响半径* @param type 输出文件类型*/public static void kernel(double[] coordsScope, List<EntryPoint> entryPoints, int step, double radius, int type, String path){// 获取网格坐标系的lon, lat的列表List<Double[]> coords = KernelUtils.getKennelPointCoords(coordsScope[0], coordsScope[1],coordsScope[2],coordsScope[3], step);Progress.progress( progress++);int width =  coords.get(0).length;int high = coords.get(1).length;if (type == 1){// 生产 geojson 网格结果generatorGridGeojson(coords, entryPoints, width-1, high-1, radius, path, step);}else {// 生产热力图图片generatorThermalMap(coords, entryPoints, width, high, radius, path, step);}}

2.创建面的 geojson 文件

    /***  根据核密度信息创建面的 geojson 文件* @param coords 虚拟数据点经纬度列表* @param entryPoints 数据点* @param width 横向点位数量* @param high 纵向点位数量* @param radius 影响半径*/public static void generatorGridGeojson(List<Double[]> coords, List<EntryPoint> entryPoints,int width, int high, double radius, String path, int step){// 获取所有中心点位的数据List<PixelPoint> pixelPoints = KernelUtils.getGridCenters(coords);// 进行核密度计算, 并记录受到影响的网格信息KernelResult kernelResult = kernelCompute(entryPoints, pixelPoints, width, high, radius);Double[][] matrix = kernelResult.getMatrix();Double max = kernelResult.getMax();Double min = kernelResult.getMin();// 生产面的 geojson 文件writeToFile(KernelUtils.jointGridGeojson(matrix, max, min, coords), path);System.out.println(String.format("计算完成, 生成 geojson 文件, 参与计算网格  %d 个, 受影响网格 %d 个, 相邻网格间距 %s 米",pixelPoints.size(), KernelUtils.effectiveGrid, step));}

3.热力图图片

    /*** 根据核密度信息创建热力图图片* @param coords 虚拟数据点经纬度列表* @param entryPoints 数据点* @param width 横向点位数量* @param high 纵向点位数量* @param radius 影响半径*/public static void generatorThermalMap(List<Double[]> coords, List<EntryPoint> entryPoints,int width, int high, double radius, String path, int step){// 获得所有点位List<PixelPoint> pixelPoints = KernelUtils.spliceKennelPoints(coords);// 进行核密度计算, 并记录受到影响的网格信息KernelResult kernelResult = kernelCompute(entryPoints, pixelPoints, width, high, radius);Double[][] matrix = kernelResult.getMatrix();Double max = kernelResult.getMax();Double min = kernelResult.getMin();// 生产热力图ImageGenerator.generatorImage(matrix, max, min, path);System.out.println(String.format("计算完成, 生成图片 像素: %d x  %d, 相邻像素点实际代表距离 %s 米", width, high, step));}

4.计算所有点位的核密度

    /*** 计算所有点位的核密度* @param entryPoints 数据点信息* @param pixelPoints 创建的虚拟像素点* @param radius 影响半径* @return*/public static KernelResult kernelCompute(List<EntryPoint> entryPoints, List<PixelPoint> pixelPoints, int width, int high, double radius){List<Double> values = new ArrayList<>();double affectLat = KernelUtils.getLatDist(radius);// 记录受到影响的网格Double[][] matrix = new Double[high][width];// 建立线程池ThreadPoolExecutor threadPool = new ThreadPoolExecutor(30, 30, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(Integer.MAX_VALUE));// 线程等待计数器CountDownLatch countDownLatch = new CountDownLatch(pixelPoints.size());// 创建锁, 使计算数据具有线程间可见性Lock lock = new ReentrantLock();int stepPosition = pixelPoints.size() / 75;for (int i = 0; i < pixelPoints.size(); i++){PixelPoint pixelPoint = pixelPoints.get(i);Double kennelLon = pixelPoint.getLon();Double kennelLat = pixelPoint.getLat();threadPool.execute(() -> {// 开始计算每个网格受到其他所有点所影响的核密度double kernel = 0.0;for (int j = 0; j < entryPoints.size(); j++){EntryPoint entryPoint = entryPoints.get(j);double lon = entryPoint.getLon();double lat = entryPoint.getLat();if (Math.abs(lon - kennelLon) > entryPoint.getAffectLon() || Math.abs(lat - kennelLat) > affectLat){continue;}// 获取权重, 默认为 1.0double weight = 1.0;if (entryPoint.getWeight() != null){weight = entryPoint.getWeight();}// 计算网格中心点与源数据点的距离double distance = KernelUtils.getDistance(lon, lat, kennelLon, kennelLat);// 影响半径大于距离的点直接去掉if (distance <= radius){// 计算每个网格所受影响的核密度kernel += computeKernel(radius, distance, weight);}}lock.lock();// 为中心点实体类赋予核密度的值Double value = 1 / Math.pow(radius, 2) * kernel;matrix[pixelPoint.getI()][pixelPoint.getJ()] = value;values.add(value);lock.unlock();countDownLatch.countDown();if (countDownLatch.getCount() % stepPosition == 0 && progress < 80){Progress.progress(progress++);}});}// 等待所有任务执行完毕try {countDownLatch.await();} catch (InterruptedException e) {throw new RuntimeException(e);}// 关闭线程池threadPool.shutdown();return  new KernelResult(matrix, Collections.max(values), Collections.min(values));}

5.可执行 jar 包

该程序可打为可执行jar包, 文件夹中的: kernel.jar
运行环境: jdk 1.8

执行示例:

java -jar kernel.jar 杭州市超市营业额.csv 杭州市超市营业额热力.jpg 经度 纬度 利润 2000.0 0.1 0
java -jar kernel.jar 杭州市超市营业额.csv 杭州市超市营业额分布.geojson 经度 纬度 利润 2000.0 0.1 0
java -jar kernel.jar 测试数据.csv 测试数据.jpg lon lat "" 300.0 0.1 0
java -jar kernel.jar 测试数据.csv 测试数据.geojson lon lat "" 300.0 0.1 0
参数参数位置参数说明
inputPath1输入的csv文件路径
outPath2输出的文件路径,程序根据文件后缀选择生产的文件类型,只允许 jpg、png、geojson 三种文件。
lonKey3输入文件中的经度字段名
latKey4输入文件中的纬度字段名
weightKey5输入文件中的权重字段名,没有则输入””
radius6影响半径,单位米,影响半径越长,周围空间受该数据的影响越广,需根据不同的输入数据情况调整
bufferSize7空间缓冲区,可扩大数据空间范围,一般0.1即可,即扩大 10% 的区域
step8空间划分步长,步长越小则参与计算的空间点数据越多,计算量越大,结果数据越精确, 需根据不同的输入数据情况调整,当值为0时,程序则适配生成一百万个点或网格参与计算,注:尽量不要在城市级别范围设置过低步长

四.执行结果展示

热力图示例:
在这里插入图片描述

平台分析示例:

在这里插入图片描述

杭州市超市营业额区域性分析-热力图:

在这里插入图片描述

杭州市超市营业额区域性分析-平台分析:
在这里插入图片描述

五、应用场景

  1. 金融风险评估:核密度算法可以用于评估某种投资方式的风险程度。将历史数据输入核密度估计器中,可以得出该投资方式在不同风险水平下的收益概率密度分布。这有助于金融机构更好地了解风险和收益之间的平衡。

  2. 生态学:核密度算法可用于研究动植物的栖息地和迁徙模式。将动植物的观察数据输入核密度估计器中,可以得出它们在不同地点出现的概率密度分布,帮助科学家更好地了解动植物的栖息地范围和活动规律。

  3. 交通流量预测:核密度算法可以用于预测道路上的交通流量。将历史交通流量数据输入核密度估计器中,可以得出在不同时间段内和不同位置上的交通流量概率密度分布。这有助于交通管理人员更好地规划道路、优化路线和管理交通拥堵。

  4. 模式识别:核密度算法可以使用于人脸识别、图像处理等领域。将输入数据的特征值输入核密度估计器中,可以得出不同特征值下相应数据的概率密度分布。这可用于识别图像中不同物体的特征值,例如人脸的轮廓和眼睛的位置,从而实现自动化识别。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/485694.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

nginx服务基础用法(概念、安装、热升级)

目录 一、I/O模型概述 1、I/O概念 1.1 计算机的I/O 1.2 Linux的I/O 2、零拷贝技术 3、同步/异步&#xff08;消息反馈机制&#xff09; 4、阻塞/非阻塞 5、网络I/O模型 5.1 阻塞型 I/O 模型&#xff08;blocking IO&#xff09; 5.2 非阻塞型 I/O 模型 (nonblocking …

基于Android的记单词App系统的研究与实现,附附源码

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

超级实用的python代码片段汇总和详细解析(16个)

目录 1. 生成随机文本 2. 计算文本文件中的字数 3. 替换文件文件中的字串 4. 多文件名的批量替换 5. 从网站提取数据 6. 批量下载图片 7.批量删除空文件夹 8.Excel表格读写 9.合并Excel表格工作簿 10.数据库SQL查询 11. 系统进程查杀 12.图像尺寸调整和裁剪 13.图…

数据湖Iceberg、Hudi和Paimon比较

1.社区发展现状 项目Apache IcebergApache HudiApache Paimon开源时间2018/11/62019/1/172023/3/12LicenseApache-2.0Apache-2.0Apache-2.0Github Watch1481.2k70Github Star5.3k4.9k 1.7k Github Fork1.9k2.3k702Github issue(Open)898481263Github issue(closed)20542410488…

2.22 Qt day3 多界面跳转+qss登录界面优化+发布软件+对话框

思维导图&#xff1a; 完善对话框&#xff0c;点击登录对话框&#xff0c;如果账号和密码匹配&#xff0c;则弹出信息对话框&#xff0c;给出提示”登录成功“&#xff0c;提供一个Ok按钮&#xff0c;用户点击Ok后&#xff0c;关闭登录界面&#xff0c;跳转到其他界面 如果账号…

C# Onnx 使用onnxruntime部署实时视频帧插值

目录 介绍 效果 模型信息 项目 代码 下载 C# Onnx 使用onnxruntime部署实时视频帧插值 介绍 github地址&#xff1a;https://github.com/google-research/frame-interpolation FILM: Frame Interpolation for Large Motion, In ECCV 2022. The official Tensorflow 2…

flutter开发实战-手势Gesture与ListView滚动竞技场的可滑动关闭组件

flutter开发实战-手势Gesture与ListView滚动竞技场的可滑动关闭组件 最近看到了一个插件&#xff0c;实现一个可滑动关闭组件。滑动关闭组件即手指向下滑动&#xff0c;组件随手指移动&#xff0c;当移动一定位置时候&#xff0c;手指抬起后组件滑出屏幕。 一、GestureDetect…

websocket与Socket的区别

概念讲解 网络&#xff1a;通俗意义上&#xff0c;也就是连接两台计算器 五层网络模型&#xff1a;应用层、传输层、网络层、数据链路层、物理层 应用层 (application layer)&#xff1a;直接为应用进程提供服务。应用层协议定义的是应用进程间通讯和交互的规则&#xff0c;不…

《C++ Primer Plus》《7、函数——C++的编程模块》

文章目录 前言1复习函数的基本知识1.1定义函数1.2函数原型和调用函数 2函数的参数和按值传递2.1多个参数2.2另一个接受两个参数的函数 3函数和数组3.1函数如何用指针来处理数组3.2将数组作为参数意味着什么3.3更多的数组函数示例3.4使用数组区间的函数3.5指针和const 4函数和二…

跳格子3 - 华为OD统一考试(C卷)

OD统一考试&#xff08;C卷&#xff09; 分值&#xff1a; 200分 题解&#xff1a; Java / Python / C 题目描述 小明和朋友们一起玩跳格子游戏&#xff0c;每个格子上有特定的分数&#xff0c;score[] [1 -1 -6 7 -17 7]&#xff0c; 从起点score[0]开始&#xff0c;每次最…

应急响应实战笔记03权限维持篇(2)

关键词&#xff1a;Windows系统后门、权限维持 在获取服务器权限后&#xff0c;通常会用一些后门技术来维持服务器权限&#xff0c;服务器一旦被植入后门&#xff0c;攻击者便如入无人之境。本文将对常见的window服务端自启动后门技术进行解析&#xff0c;知己知彼方能杜绝后门…

【计算机网络】数据链路层|封装成帧|透明传输|差错检测|PPP协议|CSMA/CD协议

目录 一、思维导图 ​ 二、数据链路层功能概述 1.数据链路层概述 2.数据链路层功能概述——封装成帧 3.数据链路层功能概述——透明传输 4.数据链路层功能概述——差错检测 三、数据链路层重要协议 1.数据链路层重要协议&#xff1a;PPP协议 2.数据链路层重要协议&#x…