pclpy KD-Tree K近邻搜索

pclpy KD-Tree K近邻搜索

      • 一、算法原理
          • 1.KD-Tree 介绍
          • 2.原理
      • 二、代码
      • 三、结果
          • 1.原点云
          • 2.k近邻点搜索后的点云
      • 四、相关数据

一、算法原理

1.KD-Tree 介绍

kd 树或 k 维树是计算机科学中使用的一种数据结构,用于在具有 k 维的空间中组织一定数量的点。它是一个二叉搜索树,对其施加了其他约束。Kd 树对于范围和最近邻搜索非常有用。出于我们的目的,我们通常只会处理三维的点云,因此我们所有的 kd 树都是三维的。kd 树的每一层使用垂直于相应轴的超平面沿特定维度拆分所有子节点。在树的根部,所有子节点都将根据第一维进行拆分(即,如果第一维坐标小于根,它将在左子树中,如果大于根,则显然将在左子树中右子树)。树中的每一层都在下一个维度上进行划分,一旦所有其他维度都用尽,则返回到第一个维度。构建 kd 树的最有效方法是使用像 Quick Sort 那样的分区方法,将中点放在根处,将一维值较小的所有内容放在左侧,右侧较大。然后在左子树和右子树上重复此过程,直到要分区的最后一棵树仅由一个元素组成。

来自[维基百科]:

这是一个二维 KD-Tree的例子

在这里插入图片描述

这是最近邻搜索如何工作的演示

在这里插入图片描述

2.原理
  1. KD-Tree构建: 首先,选择一个数据集中的点作为根节点,并根据这个点的一个坐标轴(通常是数据维度中的一个)将数据集分成两个子集。然后,对每个子集递归地应用相同的过程,选择该子集中的一个点作为子树的根节点,并使用另一个坐标轴来分割子集。这个过程一直持续下去,直到每个子集的大小达到某个阈值,或者直到无法再分割为止。
  2. 节点分割: 在每一层中,kd-Tree选择一个坐标轴,然后根据该坐标轴上的中位数将数据集分成两半。这个过程使得树的每个节点都代表一个超矩形区域,其中包含了数据集的部分或全部点。
  3. 最近邻搜索: 在搜索时,从根节点开始,根据目标点的坐标与当前节点表示的超矩形区域的关系,递归地向下搜索。当搜索到达叶节点时,将该叶节点中的点与目标点进行比较,选择距离最近的点。然后,回溯到父节点,检查是否存在可能更近的点,如果存在,则继续向上回溯,直到搜索完成。

二、代码

from pclpy import pclif __name__ == '__main__':# 读取点云数据cloud = pcl.PointCloud.PointXYZ()reader = pcl.io.PCDReader()reader.read("res/bunny.pcd", cloud)# 构建kd-treekdtree = pcl.kdtree.KdTreeFLANN.PointXYZ()kdtree.setInputCloud(cloud)# 设置一个点云点searchPoint = pcl.point_types.PointXYZ()searchPoint.x = cloud.xyz[0][0]   # xsearchPoint.y = cloud.xyz[0][1]   # ysearchPoint.z = cloud.xyz[0][2]   # zprint(searchPoint)# k最近邻搜索k = 800# 创建一个大小为 k 的整数向量,所有元素初始化为 0pointIdxNKNSearch = pcl.vectors.Int([0] * k)# 创建一个大小为 k 的float类型向量,所有元素初始化为 0pointNKNSquaredDistance = pcl.vectors.Float([0] * k)print('k 近邻点搜索点 (', searchPoint.x,'', searchPoint.y,'', searchPoint.z,')  k =', k)#  KdTree 返回 0 个以上的最近邻,打印if kdtree.nearestKSearch(searchPoint, k, pointIdxNKNSearch, pointNKNSquaredDistance) > 0:for i in range(len(pointIdxNKNSearch)):print("  ", cloud.x[pointIdxNKNSearch[i]]," ", cloud.y[pointIdxNKNSearch[i]]," ", cloud.z[pointIdxNKNSearch[i]]," (平方距离: ", pointNKNSquaredDistance[i], ")")# 将搜索的点保存searchPointArray = cloud.xyz[pointIdxNKNSearch]searchCloud = pcl.PointCloud.PointXYZRGB.from_array(searchPointArray, [[1, 0, 0]])viewer = pcl.visualization.PCLVisualizer("3D viewer")  # 建立一个可视化对象,窗口名 3D viewerviewer.addPointCloud(searchCloud)  # 点云数据添加到可刷对象中# viewer.addPointCloud(cloud)  # 点云数据添加到可刷对象中while not viewer.wasStopped():  # 展示可视化对象viewer.spinOnce(10)

三、结果

1.原点云

在这里插入图片描述

2.k近邻点搜索后的点云

在这里插入图片描述

四、相关数据

测试数据下载链接:https://pan.baidu.com/s/1uT6UbzU5h7wPurnQYUB7TQ
提取码:lsyg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/487830.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Flink精讲】Flink组件通信

主要指三个进程中的通讯 CliFrontendYarnJobClusterEntrypointTaskExecutorRunner Flink内部节点之间的通讯使用Akka,比如JobManager和TaskManager之间。而operator之间的数据传输是利用Netty。 RPC是统称,Akka,Netty是实现 Akka与Ac…

【Vue3】学习computed计算属性

💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢…

python 提取PDF文字

使用pdfplumber,不能提取扫描的pdf和插入的图片。 import pdfplumberfile_path rD:\UserData\admindesktop\官方文档\1903_Mesh-Models-Overview_FINAL.pdf with pdfplumber.open(file_path) as pdf:page pdf.pages[0]print(page.extract_text()) # 所以文字prin…

【c++设计模式04】创建型2:工厂方法模式(Factory Pattern)

【c设计模式04】创建型2:工厂方法模式(Factory Pattern) 一、工厂模式二、简单工厂模式的弊端三、工厂方法模式四、UML类图五、demo六、总结 原创作者:郑同学的笔记 原创地址:https://zhengjunxue.blog.csdn.net/artic…

Spark: a little summary

转眼写spark一年半了,从之前写机器学习组件、做olap到后面做图计算,一直都是用的spark,惭愧的是没太看过里面的源码。这篇文章的目的是总结一下Spark里面比较重要的point,重点部分会稍微看一下源代码,因为spark是跟cli…

网页数据的存储--存储为文本文件(TXT、JSON、CSV)

用解析器解析出数据后,接下来就是存储数据了。数据的存储有多种多样,其中最简单的一种是将数据直接保存为文本文件,如TXT、JSON、CSV等。这里就介绍将数据直接保存为文本文件。 目录 一、Python存储数据的方法 1、 文件读取 2、 文件写入…

springsecurity+vue前后端分离适配cas认证的跨域问题

0. cas服务搭建参考:CAS 5.3服务器搭建_cas-overlay-CSDN博客 1. 参照springsecurity适配cas的方式, 一直失败, 无奈关闭springssecurity认证 2. 后端服务适配cas: 参考前后端分离项目(springbootvue)接入单点登录cas_前后端分离做cas单点登录-CSDN博客 1) 引入maven依赖 …

【新三板年报文本分析】第一辑:python+selium模拟浏览器,批量实现上市公司年报链接

目录 序言函数模块介绍创建模拟浏览器对象只需要执行一次的部分需要批量执行的重复操作部分(信息录入excel)换页操作主函数 本地文件结构全部代码结果预览 如果直接需要结果的,可以直接见文末,获取资源。 序言 新三板年报链接&am…

Unity(第三部)新手绘制地形

1、创建地形 游戏对象3d对象地形 2、功能 1、 红框内按键为创建相邻地形、点击后相近地形会呈现高亮框、点击高亮区域可以快速创建地形 每块地形面积是1km*1km 2、第二个按钮是修改地形 下面的选择是修改类型 选项含义描述Raise or Lower Terrain升高或降低地形单击左键可…

NestJS入门7:增加异常过滤器

前文参考: NestJS入门1 NestJS入门2:创建模块 NestJS入门3:不同请求方式前后端写法 NestJS入门4:MySQL typeorm 增删改查 NestJS入门5:加入Swagger NestJS入门6:日志中间件 本文代码基于上一篇文章《…

开源大语言模型作为 LangChain 智能体

概要 开源大型语言模型 (LLMs) 现已达到一种性能水平,使它们适合作为推动智能体工作流的推理引擎: Mixtral 甚至在我们的基准测试中 超过了 GPT-3.5,并且通过微调,其性能可以轻易的得到进一步增强。 引言 针对 因果语言建模 训练的大型语言模…

在Linux操作系统的ECS实例上安装Hive

目录 1. 完成hadoop安装配置2. 安装配置MySql安装配置 3. 安装Hive4. 配置元数据到MySQL5. hiveserver2服务配置文件测试 1. 完成hadoop安装配置 在Linux操作系统的ECS实例上安装hadoop 以上已安装并配置完jdk、hadoop也搭建了伪分布集群 2. 安装配置MySql 安装 下下一步…