YOLOv8改进,添加GSConv+Slim Neck,有效提升目标检测效果,代码改进(超详细)

目录

摘要

 主要想法

GSConv

GSConv代码实现 

 slim-neck

  slim-neck代码实现

yaml文件

完整代码分享

总结


摘要

目标检测是计算机视觉中重要的下游任务。对于车载边缘计算平台来说,巨大的模型很难达到实时检测的要求。而且,由大量深度可分离卷积层构建的轻量级模型无法达到足够的精度。我们引入了一种新的轻量级卷积技术 GSConv,以减轻模型重量但保持准确性。 GSConv 在模型的准确性和速度之间实现了出色的权衡。并且,我们提供了一种设计范例,细颈,以实现探测器更高的计算成本效益。我们的方法的有效性在二十多组比较实验中得到了强有力的证明。特别是,与原始检测器相比,通过我们的方法改进的检测器获得了最先进的结果(例如,在公开数据集的Tesla T4 GPU 上以100FPS 的速度获得 70.9% mAP0.5)。

 主要想法

生物大脑处理信息的强大能力和低能耗远远超出了计算机。简单地无休止地增加模型参数的数量并不能建立强大的模型。轻量化设计可以有效缓解现阶段高昂的计算成本。这个目的主要是通过深度可分离卷积(DSC)运算来减少参数量和浮点运算(FLOP)来实现的,效果很明显。然而DSC的缺点也很明显:在计算过程中输入图像的通道信息被分离。这一缺陷导致 DSC 的特征提取和融合能力比标准卷积 (SC) 低得多。

SC(左) 和 DSC(右) 的计算过程。 SC是通道密集卷积计算,DSC是通道稀疏卷积计算。

GSConv

尽管DSC有一定的优点,但DSC 的缺陷在主干中直接被放大,无论是用于图像分类还是检测。我们相信SC和DSC可以合作。我们注意到,仅通过混洗 DSC 输出通道生成的特征图仍然是“深度分离”。为了使DSC的输出尽可能接近SC,我们引入了一种新方法——SC、DSC和shuffle的混合卷积,命名为GSConv。如图所示,我们使用shuffle将SC(通道密集卷积运算)生成的信息渗透到DSC生成的信息的每个部分中。shuffle是一种统一的混合策略。该方法通过在不同通道上统一交换局部特征信息,可以将来自 SC 的信息完全混合到 DSC 的输出中,而无需任何附加功能。

GSConv 模块的结构—— “Conv”框由三层组成:卷积 2D 层、批量归一化 2D 层和激活层。这里蓝色标记的“DWConv”表示DSC操作。
GSConv代码实现 
import torch
import torch.nn as nn
import math# GSConvE test
class GSConvE(nn.Module):'''GSConv enhancement for representation learning: generate various receptive-fields andtexture-features only in one Conv modulehttps://github.com/AlanLi1997/slim-neck-by-gsconv'''def __init__(self, c1, c2, k=1, s=1, g=1, act=True):super().__init__()c_ = c2 // 4self.cv1 = Conv(c1, c_, k, s, None, g, act)self.cv2 = Conv(c_, c_, 9, 1, None, c_, act)self.cv3 = Conv(c_, c_, 13, 1, None, c_, act)self.cv4 = Conv(c_, c_, 17, 1, None, c_, act)def forward(self, x):x1 = self.cv1(x)x2 = self.cv2(x1)x3 = self.cv3(x1)x4 = self.cv4(x1)y = torch.cat((x1, x2, x3, x4), dim=1)# shuffley = y.reshape(y.shape[0], 2, y.shape[1] // 2, y.shape[2], y.shape[3])y = y.permute(0, 2, 1, 3, 4)return y.reshape(y.shape[0], -1, y.shape[3], y.shape[4])def autopad(k, p=None):  # kernel, padding# Pad to 'same'if p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass Conv(nn.Module):# C_B_Mdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = nn.Mish() if act else (act if isinstance(act, nn.Module) else nn.Identity())def forward(self, x):return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):return self.act(self.conv(x))class GSConv(nn.Module):# GSConv https://github.com/AlanLi1997/slim-neck-by-gsconvdef __init__(self, c1, c2, k=1, s=1, g=1, act=True):super().__init__()c_ = c2 // 2self.cv1 = Conv(c1, c_, k, s, None, g, act)self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)def forward(self, x):x1 = self.cv1(x)x2 = torch.cat((x1, self.cv2(x1)), 1)# shuffley = x2.reshape(x2.shape[0], 2, x2.shape[1] // 2, x2.shape[2], x2.shape[3])y = y.permute(0, 2, 1, 3, 4)return y.reshape(y.shape[0], -1, y.shape[3], y.shape[4])class GSConvns(GSConv):# GSConv with a normative-shuffle https://github.com/AlanLi1997/slim-neck-by-gsconvdef __init__(self, c1, c2, k=1, s=1, g=1, act=True):super().__init__(c1, c2, k=1, s=1, g=1, act=True)c_ = c2 // 2self.shuf = nn.Conv2d(c_ * 2, c2, 1, 1, 0, bias=False)def forward(self, x):x1 = self.cv1(x)x2 = torch.cat((x1, self.cv2(x1)), 1)# normative-shuffle, TRT supportedreturn nn.ReLU(self.shuf(x2))class GSBottleneck(nn.Module):# GS Bottleneck https://github.com/AlanLi1997/slim-neck-by-gsconvdef __init__(self, c1, c2, k=3, s=1):super().__init__()c_ = c2 // 2# for lightingself.conv_lighting = nn.Sequential(GSConv(c1, c_, 1, 1),GSConv(c_, c2, 3, 1, act=False))self.shortcut = Conv(c1, c2, 1, 1, act=False)def forward(self, x):return self.conv_lighting(x) + self.shortcut(x)class DWConv(Conv):# Depth-wise convolution classdef __init__(self, c1, c2, k=1, s=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groupssuper().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)class GSBottleneckC(GSBottleneck):# cheap GS Bottleneck https://github.com/AlanLi1997/slim-neck-by-gsconvdef __init__(self, c1, c2, k=3, s=1):super().__init__(c1, c2, k, s)self.shortcut = DWConv(c1, c2, 3, 1, act=False)class VoVGSCSP(nn.Module):# VoVGSCSP module with GSBottleneckdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):super().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)# self.gc1 = GSConv(c_, c_, 1, 1)# self.gc2 = GSConv(c_, c_, 1, 1)self.gsb = GSBottleneck(c_, c_, 1, 1)self.res = Conv(c_, c_, 3, 1, act=False)self.cv3 = Conv(2*c_, c2, 1)  #def forward(self, x):x1 = self.gsb(self.cv1(x))y = self.cv2(x)return self.cv3(torch.cat((y, x1), dim=1))
 slim-neck

此外,还研究了增强 CNN 学习能力的通用方法,例如 DensNet 、VoVNet 和 CSPNet ,然后根据这些方法的理论设计 slim-neck 的结构。我们设计了细长的颈部,以降低检测器的计算复杂性和推理时间,但保持精度。 GSConv完成了降低计算复杂度的任务,而减少推理时间并保持精度的任务需要新的模型。 

GSConv的计算成本约为SC的50%(0.5+0.5C1,C1值越大,比例越接近50%),但其对模型学习能力的贡献与后者相当。基于GSConv,我们在GSConv的基础上继续引入GS瓶颈,下图(a)展示了GS瓶颈模块的结构。然后,我们使用一次性聚合方法设计跨阶段部分网络(GSCSP)模块VoV-GSCSP。图(b)(c)和(d)分别显示了我们为VoV-GSCSP提供的三种设计方案,其中(b)简单直接且推理速度更快,(c)和(d)具有功能的重用率更高。事实上,结构越简单的模块由于硬件友好而更容易被使用。下表也详细报告了VoV-GSCSP1、2、3三种结构的消融研究结果,事实上,VoVGSCSP1表现出更高的性价比。最后,我们需要灵活地使用 GSConv、GS 瓶颈和 VoV-GSCSP 这四个模块。

(a) GS瓶颈模块和(b)、(c)、(d) VoV-GSCSP1、2、3模块的结构

细颈 yolov5n 的三种不同 VoV-GSCSP 模块的比较
  slim-neck代码实现
class VoVGSCSPC(VoVGSCSP):# cheap VoVGSCSP module with GSBottleneckdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):super().__init__(c1, c2, e)c_ = int(c2 * e)  # hidden channelsself.gsb = GSBottleneckC(c_, c_, 3, 1)

代码都添加在common.py中 

yaml文件
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicle
# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, GSConv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, VoVGSCSP, [512, False]],  # 13[-1, 1, GSConv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, VoVGSCSP, [256, False]],  # 17 (P3/8-small)[-1, 1, GSConv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, VoVGSCSP, [512, False]],  # 20 (P4/16-medium)[-1, 1, GSConv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, VoVGSCSP, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]
完整代码分享

https://download.csdn.net/download/m0_67647321/88885727icon-default.png?t=N7T8https://download.csdn.net/download/m0_67647321/88885727

总结

本实验引入了一种新的轻量级卷积方法 GSConv,使深度可分离卷积达到接近普通卷积的效果并且更加高效。设计了一次性聚合模块 VoV-GSCSP 来代替普通的瓶颈模块以加速推理。此外,我们还提供轻量化的细颈设计范例。在我们的实验中,与其他轻量级卷积方法相比,GSConv 显示出更好的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/496309.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第三节-docker-cs架构分析

一、组成 docker engine:docker-client、rest-api、dockerd containerd: 1、管理容器生命周期 2、拉取/推送镜像 3、存储管理 4、调用runc 5、管理网络 containerd-shim:相当于一个驱动,containerd通过containerd-shim驱使…

Qt中tableView控件的使用

tableView使用注意事项 tableView在使用时,从工具栏拖动到底层页面后,右键进行选择如下图所示: 此处需要注意的是,需要去修改属性,从UI上修改属性如下所示: 也可以通过代码修改属性: //将其设…

phpldapadmin This base cannot be created with PLA

phpldapadmin This base cannot be created with PLA 1、问题描述2、问题分析3、解决方法:创建根节点 1、问题描述 安装phpldapadmin参考链接: https://blog.csdn.net/OceanWaves1993/article/details/136048686?spm1001.2014.3001.5501 刚安装完成phpldapadmin&…

可观测性在威胁检测和取证日志分析中的作用

在网络中,威胁是指可能影响其平稳运行的恶意元素,因此,对于任何希望避免任何财政损失或生产力下降机会的组织来说,威胁检测都是必要的。为了先发制人地抵御来自不同来源的任何此类攻击,需要有效的威胁检测情报。 威胁…

git忽略某些文件(夹)更改方法

概述 在项目中,常有需要忽略的文件、文件夹提交到代码仓库中,在此做个笔录。 一、在项目根目录内新建文本文件,并重命名为.gitignore,该文件语法如下 # 以#开始的行,被视为注释. # 忽略掉所有文件名是 a.txt的文件. a.txt # 忽略所有生成的 java文件, *.java # a.j…

Neoverse S3 系统 IP:机密计算和多芯片基础设施 SoC 的基础

第三代Neoverse系统IP Neoverse S3 产品推出了我们的第三代基础设施特定系统 IP,这是下一代基础设施 SOC 的理想基础,适用于从 HPC 和机器学习到 Edge 和 DPU 的各种应用。S3 机箱专注于为我们的合作伙伴提供 Chiplet、机密计算等关键创新以及 UCIe、DD…

Vue:【亲测可用】父组件数组包对象,传给子组件对象,子组件修改属性(字段)后,父组件没有更新

场景&#xff1a;vue中父组件数组包对象&#xff0c;传给子组件对象&#xff0c;子组件修改属性&#xff08;字段&#xff09;后&#xff0c;父组件没有更新 代码&#xff1a; # 父组件 <div v-for"(object, name, index) in arr" :key"index"><…

认识AJAX

一、什么是Ajax? 有跳转就是同步&#xff0c;无跳转就是异步 Asynchronous Javascript And XML&#xff08;异步JavaScript和XML&#xff09; Ajax 异步 JavaScript 和XML。Ajax是一种用于创建快速动态网页的技术通过在后台与服务器进行少量数据交换&#xff0c;Ajax可以使网…

【C++从0到王者】第四十五站:图

文章目录 一、图的概念1.图概念2.顶点与边的概念3.有向图和无向图4.完全图5.邻接顶点6.顶点的度7.路径与路径长度8.简单路径与回路9.子图10.连通图与强连通图11.生成树 二、图的存储结构1.邻接矩阵1.1 基本概念1.2 代码实现 2.邻接表1.1 基本概念1.2 代码实现 3.总结 一、图的概…

Vue自定义指令directives

1. 使用<script setup> <template><input v-focus"11111" /><input v-obj"{ id: 1, name: 这里是name }" /> </template> <script setup> //定义一个变量vFocus //命名方法使得DOM元素中可以用v-focus来显示 let vFo…

VUE从0到1创建项目及基本路由、页面配置

一、创建项目:(前提已经安装好vue和npm) 目录:E:\personal\project_pro\ windows下,win+R 输入cmd进入命令行: cd E:\personal\project_pro E:# 创建名为test的项目 vue create test# 用上下键选择vue2或vue3,回车确认创建本次选择VUE3 创建好项目后,使用…

【Leetcode每日一题】二分查找 - 有效的完全平方数(难度⭐)(19)

1. 题目解析 Leetcode链接&#xff1a;367. 有效的完全平方数 这个问题的理解其实相当简单&#xff0c;只需看一下示例&#xff0c;基本就能明白其含义了。 核心在于判断给定的整数是否可以开方成两个整数相乘&#xff0c;可以就返回false&#xff0c;反之返回true。 2. 算法…