基于频率增强的数据增广的视觉语言导航方法(VLN论文阅读)

基于频率增强的数据增广的视觉语言导航方法(VLN论文阅读)

在这里插入图片描述

本文提出的方法很简单,将原始图像增加其他随机图像的高频信息,得到增强的图像作为新的样本,与原始的样本交替训练。背后的动机是,vln模型对高频信息敏感,本文方法使得vln模型能够更加关注正确(原始)的高频信息。

摘要

  视觉和语言导航(VLN)是一项具有挑战性的任务,它需要代理基于自然语言指令在复杂的环境中导航。
在视觉语言导航任务中,之前的研究主要是在空间上进行数据增广,本文的重点是在傅里叶频率方面,它旨在增强视觉文本匹配
作者首先探索了高频信息的意义,并提供了证据表明这些高频信息对增强视觉文本匹配是有用的(instrumental)。
基于此,作者首先提出了一种Frequency-enhanced Data Augmentation (FDA)技术,提高模型捕捉关键高频信息的能力。

具体来说,这种方法要求代理在只有一个高频视觉信息对应所提供的文本指令的子集的环境中导航,最终促进了代理根据给定的指令选择性地识别和捕获相关的高频特征的能力。
方法好处:1.简单有效,2,模型架构无关,3不增加参数

1. 引言

  最近的研究从空间域的角度调研了注意力机制,检测模型,细粒度的轨迹-指令对等方式以提高跨模态的匹配能力。
本文重点关注 Fourier domain来enhance visual textual matching,a research area that has received limited prior investigation。
具体来说,当在傅里叶域内进行分析时,高频和低频信息属于图像的不同组成部分。高频部分包括快速的变化,细粒度的细节,边,纹理。低频包括平滑的颜色梯度。如图一所示。
在这里插入图片描述
图1:高频和低频信息的示例。蓝色背景部分是经过傅里叶反变换后的空间域高频谱和高频信息。橙色的背景部分是关于这两种内容的低频信息。

  我们只是简单地通过扰动图像中的低频或高频分量来研究基准方法对低频或高频信息的敏感性。
在这里插入图描述
图2:基准方法对高、低频信息的敏感性分析,即HAMT [9]、DUET [10]和TD-STP [64]。正常的导航场景表示正常的导航场景。hf扰动和lf扰动分别表示高频和低频被扰动的导航场景。

  如图2所示,在R2R数据集上,当基线模型(HAMT,DUET,TD-STP)低频被扰动时,仍然保持一个高的准确率,当高频被扰动时,模型成功率减低明显。这些结果表明VLN模型对高频信息更加敏感。

  为了有效地利用高频信息的好处,我们进一步提出了一种频率增强数据增强(FDA)tailored for VLN,这是一种简单而有效的方法,以增强模型捕获基本高频信息的能力。
具体来说,FDA方法在导航view上利用离散傅里叶变换,从RGB通道中提取高频和低频成分。它用来自干扰图像的部分高频分量替换原图像的部分高频分量,以此引入高频扰动。通过应用傅里叶反变换对扰动高频原始低频分量的组合,得到了增广数据。通过训练代理同时将原始指令与原始导航视图和增强导航视图相匹配,FDA的方法鼓励代理磨练(hone)其捕获与给定指令最一致的相关高频信息的能力。

  本文贡献总结如下: 1)对VLN任务中的频域信息进行了首次深入的分析,强调了高频信息在提高导航性能方面的重要性。这种新颖的视角为社区探索和增强VLN模型提供了新的研究机会。2)我们进一步介绍了一种简单、有效的数据增强方法,即频率增强数据增强(FDA),它增强了模型在不增加复杂性的情况下识别和捕获基本高频信息的能力,为研究界提供了实用的解决方案。3)该方法在R2R、RxR、CVDN和幻想等各种跨模态导航任务上取得了良好的效果,并在不同模型间表现出较强的适应性。


2. 方法(Frequency Perspective for Vision-and-Language Navigation)

  方法包括三个部分:1)VLN问题定义,2)高频信息和低频信息的作用,3)FDA方法(Frequency-enhanced Data Augmentation)

2.1 VLN问题定义

  根据VLN设置, an agent 在含有许多预设点 p i p^i pi 的室内环境 E = { p 1 , p 2 , . . . , p ∣ E ∣ } E=\{p^1,p^2,...,p^{|E|}\} E={p1,p2,...,pE} 中导航, 遵循一共人类指令 T = { w 1 , w 2 , . . . , w ∣ T ∣ } . T=\{w_1,w_2,...,w_{|T|}\}. T={w1,w2,...,wT}. 假设在步骤t, the agent站在点 p t i p_t^i pti 可以接收到周围的全景图 O t = ( o t k ) k = 1 36 O_t=(o_t^k)_{k=1}^{36} Ot=(otk)k=136 包含36个离散的observation o t k o_t^k otk. 每个 observation o t k = ( I t k , θ t k , ϕ t k ) o_t^k=(I_t^k,\theta_t^k,\phi_t^k) otk=(Itk,θtk,ϕtk) 由第 k t h k_{th} kth 个视图 I t k I_t^k Itk 以及它对应的 θ t k \theta_t^k θtk 和仰角 ϕ t k \phi_t^k ϕtk结合. 临近的可导航点 N ( p t i ) N(p_t^i) N(pti)分布在这些视图中. The agent 根据指令 T T T N ( p t i ) N(p_t^i) N(pti)所在的环境 o f k o_f^k ofk之间的关系从相邻的点 N ( p t i ) N(p_t^i) N(pti)中选择下一个可导航点 . 然后,代理将被传送到那个选定的点。导航继续,直到代理预测停止操作或超过预设的步骤阈值。当代理站在目标目的地3米内停止时,导航被认为是成功的。

2.2 高频信息和低频信息的作用(High Frequency or Low Frequency: Which Benefits VLN Performance?)

  考虑到图2的观察结果,我们假设图像中的高频信息可能对跨模态导航任务至关重要。为了验证这一假设,我们进行了一个简单的实验,即将原始图像特征与其相应的高频或低频分量进行融合。这些合并后的特性随后在训练和测试过程中作为导航网络的输入,如图3所示。TD-STP [64]的结果见表1。
在这里插入图片描述
在这里插入图片描述

  以上观察结果突出了高频信息在跨模态导航中的关键作用。这是因为
  1)高频信息包含了一些细节,如边、角和纹理模式。这些细节对于准确地识别和区分物体、场景和位置至关重要,这可以导致更有效的视觉-文本匹配和更好的导航表现。
  2)使用高频信息训练的模型往往对环境变化更健壮,并对看不见的环境表现出更强的泛化能力,因为该模型学习了专注于一组更多样化的特征,而不是仅仅记忆训练数据中出现的特定的低频、全局模式。

2.3 FDA方法(Frequency-enhanced Data Augmentation)

在这里插入图片描述
图4:我们的方法将干扰高频和参考高频混合在一起。然后,通过对混合高频和参考低频的组合应用傅里叶反变换,得到了增广图像。最后,将只包含部分参考高频的增强图像与指令对齐,以鼓励代理识别和捕获参考高频信息。FFT和iFFT表示傅里叶变换和傅里叶反变换。GHPF和GLPF分别表示高斯高通滤波器和高斯低通滤波器。

  如图4所示,参考图像I是与导航指令T对应的导航视图(“向前走,经过冰箱,在餐桌后面左转,直接穿过门口……”)。干涉图像Iˆ是从Matterport3d(Mp3d)数据集[6]中随机采样的另一个导航视图。为了防止信息泄漏,所有的干扰图像都从训练/验证可见分割中采样,并且不使用验证未可见分割和测试分割中的图像。
我们首先通过傅里叶变换(FFT)将这两张图片转换到频率空间,得到两个频率谱 F I { r g b } F_I^{\{rgb\}} FI{rgb} and F I ^ { r g b } F_{\hat{I}}^{\{rgb\}} FI^{rgb}:

F I { r g b } = F { r g b } ( I ) , F I ^ { r g b } = F { r g b } ( I ^ ) F_I^{\{rgb\}}=\mathcal{F}^{\{rgb\}}(I),~F_{\hat{I}}^{\{rgb\}}=\mathcal{F}^{\{rgb\}}(\hat{I}) FI{rgb}=F{rgb}(I), FI^{rgb}=F{rgb}(I^)   其中 F { r g b } \mathcal{F}^{\{rgb\}} F{rgb} 表示RGB颜色通道上的傅里叶变换。然后,我们在两个频谱上应用高通和低通高斯滤波器来获得参考高频 H { r g b } H^{\{rgb\}} H{rgb},参考低频 L { r g b } L^{\{rgb\}} L{rgb} 和干扰高频y H ^ { r g b } . \hat{H}^{\{rgb\}}. H^{rgb}.
H { r g b } = G h ⊙ F I { r g b } , L { r g b } = G l ⊙ F I { r g b } , H ^ { r g b } = G h ⊙ F I ^ { r g b } \begin{aligned}H^{\{rgb\}}=\mathcal{G}_h\odot F_I^{\{rgb\}},&L^{\{rgb\}}=\mathcal{G}_l\odot F_I^{\{rgb\}},&\hat{H}^{\{rgb\}}=\mathcal{G}_h\odot F_{\hat{I}}^{\{rgb\}}\end{aligned} H{rgb}=GhFI{rgb},L{rgb}=GlFI{rgb},H^{rgb}=GhFI^{rgb}  其中 G h G_h Gh and G l G_l Gl 表示 Gaussian High-Pass Filter (GHPF)和 Gaussian Low-Pass Filter (GLPF), and ∙ ◯ \textcircled{\bullet} is element-wise multiplication. 然后我们将这两个图像的高频部分混合,具体来说,对于参考图像的每个RGB信道,有一定的概率是其高频分量被来自同一信道的干扰高频所取代:
H m i x c = M i x ( H c , H ^ c ) = { H c , p r o b a b i l i t y o f 1 / 3 H ^ c , o t h e r s , c ∈ { r , g , b } H m i x { r g b } = M i x ( H { r g b } , H ^ { r g b } ) \begin{gathered} \left.H_{mix}^{c}=\mathcal{M}ix(H^{c},\hat{H}^{c})=\left\{\begin{array}{ll}{{H^{c},}}&{{probabilityof1/3}}\\{{\hat{H}^{c},}}&{{others}}\end{array}\right.\right.,c\in\{r,g,b\} \\ H_{mix}^{\{rgb\}}=\mathcal{M}ix(H^{\{rgb\}},\hat{H}^{\{rgb\}}) \end{gathered} Hmixc=Mix(Hc,H^c)={Hc,H^c,probabilityof1/3others,c{r,g,b}Hmix{rgb}=Mix(H{rgb},H^{rgb})  其中 H m i x { r g b } H_{mix}^{\{rgb\}} Hmix{rgb} 是混合的高频. 我们将它与参考低频 L { r g b } L^{\{rgb\}} L{rgb} 结合然后用 iFFT获得频率增强的图像 I m i x I_{mix} Imix:

I m i x = F − 1 ( F m i x { r g b } ) = F − 1 ( H m i x { r g b } , L { r g b } ) . I_{mix}=\mathcal{F}^{-1}(F_{mix}^{\{rgb\}})=\mathcal{F}^{-1}(H_{mix}^{\{rgb\}},L^{\{rgb\}}). Imix=F1(Fmix{rgb})=F1(Hmix{rgb},L{rgb}).  最后原始图像 I I I 和增广图像 I m i x I_{mix} Imix 共享同一个文本指令标签 T T T 在训练阶段交替用于训练agent:

L ( θ ) = { N a v i g a t o r L o s s ( I , T , θ ) , o d d - n u m b e r e d s t e p N a v i g a t o r L o s s ( I m i x , T , θ ) , e v e n - n u m b e r e d s t e p \left.L(\theta)=\left\{\begin{array}{ll}NavigatorLoss(I,T,\theta),&odd\text{-}numberedstep\\NavigatorLoss(I_{mix},T,\theta),&even\text{-}numberedstep\end{array}\right.\right. L(θ)={NavigatorLoss(I,T,θ),NavigatorLoss(Imix,T,θ),odd-numberedstepeven-numberedstep  其中 L ( θ ) L(\theta) L(θ) 表示考虑了原始图像 I I I和频率增强图像 I m i x 的导航损失 , θ I_{mix}的导航损失,\theta Imix的导航损失,θ 表示导航器的参数。


3,实验

消融实验(在不同的模型和不同的数据集上)在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

  如表5,现有的VLN方法在高频扰动导航场景中受到了严重的限制。ImageNet表示从ImageNet中选取干扰图像。这有力地证明了我们的方法能够识别和捕获必要的高频信息,以提高导航性能。


在这里插入图片描述
在这里插入图片描述

与sota结果相比

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

局限性和未来的工作。
本文重点是增强模型识别和捕获基本高频信息的一般能力。然而,还没有探索频率和特定场景或类别之间的细粒度相关性。这一调查领域仍然是未来探索的一条途径。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/497148.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

nginx之重写功能 模块指令 防盗链

一 重写功能 rewrite Nginx服务器利用 ngx_http_rewrite_module 模块解析和处理rewrite请求, 此功能依靠 PCRE(perl compatible regular expression),因此编译之前要安装PCRE库,rewrite是 nginx服务器的重要功能之一,重写功…

【重要公告】BSV区块链协会全新推出“网络访问规则NAR”

​​发表时间:2024年2月15日 BSV区块链协会正式宣布已为BSV区块链推出一套全新的网络访问规则(Network Access Rules,以下简称“NAR”)。 NAR是一整套规则,用于规范BSV协会与BSV网络节点之间的关系。它基于比特币最初…

云计算与大数据课程笔记(一)云计算背景与介绍

如何实现一个简易搜索引擎? 实现一个简易的搜索引擎可以分为几个基本步骤:数据收集(爬虫)、数据处理(索引)、查询处理和结果呈现。下面是一个概括的实现流程: 1. 数据收集(爬虫&am…

SpringCloud Eureka(注册中心)

一、spring cloud简介 spring cloud 为开发人员提供了快速构建分布式系统的一些工具,包括配置管理、服务发现、断路器、路由、微代理、事件总线、全局锁、决策竞选、分布式会话等等。它运行环境简单,可以在开发人员的电脑上跑。另外说明spring cloud是基…

论文笔记:A survey on zero knowledge range proofs and applications

https://link.springer.com/article/10.1007/s42452-019-0989-z 描述了构建零知识区间证明(ZKRP)的不同策略,例如2001年Boudot提出的方案;2008年Camenisch等人提出的方案;以及2017年提出的Bulletproofs。 Introducti…

Vue <script setup>

目录 基本语法 顶层的绑定会被暴露给模板 响应式 使用组件 动态组件 递归组件 命名空间组件 使用自定义指令 defineProps() 和 defineEmits() 针对类型的 props/emit 声明 使用类型声明时的默认 props 值 顶层 await 限制 <script setup> 是在单文件组件 (S…

第二周opencv

一、边缘检测算子 边缘检测算子是用于检测图像中物体边界的工具。边缘通常表示图像中灰度值或颜色发生显著变化的地方。边缘检测有助于识别图像中的物体形状、轮廓和结构。这些算子通过分析图像的灰度或颜色梯度来确定图像中的边缘。 1、Roberts 算子 通过局部差分计算检测边缘…

【物联网应用案例】智能农业应用案例

随着物联网 (IoT) 的广泛应用&#xff0c;各种互联设备已经深度融入我们的生活&#xff0c;涵盖了健康与健身、家庭自动化、物流运输以及智慧城市和工业物联网等多个领域。因此&#xff0c;将物联网、联网设备和自动化技术应用于农业&#xff0c;是十分符合时代发展需求的&…

基于vue-office实现docx、xlsx、pdf文件的在线预览

概述 在做项目的时候会遇到docx、xlsx、pdf等文件的在线预览需求&#xff0c;实现此需求可以有多种解决方式&#xff0c;本文基于vue-office实现纯前端的文件预览。 效果 如下图&#xff0c;分别为docx、xlsx、pdf三种类型的文件在线加载后的效果。你也可以访问官方预览网址…

达梦数据库把日志数据按天统计不同状态的数据,实现字段行转列与根据id分组

1、这是日志表记录的数据&#xff0c;现在需要统计出每个app_id各个警告类型alarm_type的总数 2、先实现行转列&#xff0c;把三个alarm_type值转成列字段 SQL select app_id,count(CASE WHEN alarm_typeconcurrency THEN 1 ELSE null END) AS currentCount,count(CASE WHEN …

Vue官网“食用指南”

把Vue官网当做一个工具来用&#xff0c;有问题&#xff0c;先来官网查一查。 官网中常用的板块 官网&#xff1a;https://cn.vuejs.org/上手后&#xff0c;最常用的模块是【快速上手】【API】。所以务必要知道这两个模块在哪里&#xff0c;怎么使用。![image.png](https://img…

VL817-Q7 USB3.0 HUB芯片 适用于扩展坞 工控机 显示器

VL817-Q7 USB3.1 GEN1 HUB芯片 VL817-Q7 USB3.1 GEN1 HUB芯片 VIA Lab的VL817是一款现代USB 3.1 Gen 1集线器控制器&#xff0c;具有优化的成本结构和完全符合USB标准3.1 Gen 1规范&#xff0c;包括ecn和2017年1月的合规性测试更新。VL817提供双端口和双端口4端口配置&…