yolov5v7v8目标检测增加计数功能--免费源码

在yolo系列中,很多网友都反馈过想要在目标检测的图片上,显示计数功能。其实官方已经实现了这个功能,只不过没有把相关的参数写到图片上。所以微智启软件工作室出一篇教程,教大家如何把计数的参数打印到图片上。

一、yolov5目标检测增加计数功能实现

1、在detect.py代码中的132行左右,找到这样的代码

{n}是指类别统计的数量

{names[int(c)]}则是标签名

所以只需要调整这两个参数,就可以得到想要的格式,对于我们常用的习惯,我把代码改成了如下的格式:

运行输出代码,发现前面多出一串,并不是我们想要的效果

所以需要我们自己定义一个变量,只接收后面的统计参数即可。我这里放在了55行,定义一个空的字符串

count=''

然后,只需要在合适的位置,通过cv2,把参数写到图片即可。我这里添加到了151行左右,也就是im0 = annotator.result()的后面。

cv2.putText(im0, f"{s}",(30,30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2,cv2.LINE_AA)

关于cv2的参数含义如下:

  • im0: 这是输入图像,即要在其上添加文本的图像。
  • f"{s}": 这是要添加到图像上的文本。在这里,s 是一个变量,它被转换为字符串并作为文本添加到图像上。
  • (30, 30): 这是文本在图像上的位置坐标。在这个例子中,文本将放置在图像的 (30, 30) 位置。
  • cv2.FONT_HERSHEY_SIMPLEX: 这是字体类型。在这个例子中,使用了 Hershey Simplex 字体。
  • 1: 这是字体缩放因子。这个值决定了文本的大小。
  • (0, 0, 255): 这是文本的颜色。在这个例子中,文本颜色为红色,表示为 BGR(蓝色、绿色、红色)格式的元组。
  • 2: 这是文本线条的粗细。这个值决定了文本边缘的粗细程度。
  • cv2.LINE_AA: 这是线条类型。在这个例子中,使用了抗锯齿线条。

在cv2添加完后,再清空字符串,方便下次的统计

count=''

二、yolov7目标检测增加计数功能


yolov7和yolov5其实差不多的,可以先运行看一下效果,这个是统计的输出如下,发现有现成的效果:

在这里插入图片描述
打开detect.py。找到117行左右



所以我们只需把{n}–这里的{n}也就是类别的数量,移动到后面就可以了,同时还可以把逗号换成自己想要的符号,我这里是“ | ”移动后如下(可以根据自己的需求更改):

s += f"{names[int(c)]}{'s' * (n > 1)}:{n}|" 

接下来,在合适的位置,通过cv2来把文字显示图片上
在这里插入图片描述

cv2.putText(im0, f"{s}",(30,30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2,cv2.LINE_AA)
  • im0: 这是输入图像,即要在其上添加文本的图像。
  • f"{s}": 这是要添加到图像上的文本。在这里,s 是一个变量,它被转换为字符串并作为文本添加到图像上。
  • (30, 30): 这是文本在图像上的位置坐标。在这个例子中,文本将放置在图像的 (30, 30) 位置。
  • cv2.FONT_HERSHEY_SIMPLEX: 这是字体类型。在这个例子中,使用了 Hershey Simplex 字体。
  • 1: 这是字体缩放因子。这个值决定了文本的大小。
  • (0, 0, 255): 这是文本的颜色。在这个例子中,文本颜色为红色,表示为 BGR(蓝色、绿色、红色)格式的元组。
  • 2: 这是文本线条的粗细。这个值决定了文本边缘的粗细程度。
  • cv2.LINE_AA: 这是线条类型。在这个例子中,使用了抗锯齿线条。

v7从115行到133行的完整代码如下,可以直接替换。

       for c in det[:, -1].unique():n = (det[:, -1] == c).sum()  # detections per classs += f"{names[int(c)]}{'s' * (n > 1)}  | {n} "  # add to string# Write resultsfor *xyxy, conf, cls in reversed(det):if save_txt:  # Write to filexywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywhline = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label formatwith open(txt_path + '.txt', 'a') as f:f.write(('%g ' * len(line)).rstrip() % line + '\n')if save_img or view_img:  # Add bbox to imagelabel = f'{names[int(cls)]} {conf:.2f}'plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)# Print time (inference + NMS)print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')
cv2.putText(im0, f"{s}", (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA)

 三、yolov8目标检测计数功能实现

yolov8相对于前面两个的计数,稍微来说比较麻烦点,可能也有类似的参数,但是我没有找到,所以debug后发现【self.results[i].boxes.cls】这个属性里面,有类别的统计

所以只需要遍历统计这个类别序号的个数即可。

 # 将结果转换为Python列表result_list = self.results[i].boxes.cls.tolist()# 初始化一个空字典用于存储数字和它们的出现次数count_dict = {}# 遍历列表,统计数字出现的次数for number in result_list:if number in count_dict:count_dict[number] += 1else:count_dict[number] = 1for k, v in count_dict.items():names_dic[self.model.names[k]] = vresult_str = '| '.join([f'{key}:{value}' for key, value in names_dic.items()])

然后,在合格的位置,cv2,我添加在了

if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:

这个方法的后面,因为只有执行了它,self.plotted_img才会被赋值

cv2.putText(self.plotted_img, result_str, (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2,cv2.LINE_AA)

 

运行效果如下图:


至此,代码已经全部给出了,只要注意代码的缩进,就可以大功告成了。不过,有的朋友还是不懂得修改,那么我就把测试的python完整代码放到csdn上吧,设置的0积分下载。

代码下载地址:

https://download.csdn.net/download/weixin_41717861/88887348

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/497155.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

德人合科技 | 天锐绿盾终端安全管理系统

德人合科技提到的“天锐绿盾终端安全管理系统”是一款专业的信息安全防泄密软件。这款软件基于核心驱动层,为企业提供信息化防泄密一体化方案。 www.drhchina.com 其主要特点包括: 数据防泄密管理:天锐绿盾终端安全管理系统能够确保数据在创…

HUAWEI 华为交换机 配置基于VLAN的MAC地址学习限制接入用户数量 配置示例

组网需求 如 图 2-15 所示,用户网络 1 通过 LSW1 与 Switch 相连, Switch 的接口为 GE0/0/1 。用户网络2通过 LSW2 与 Switch 相连, Switch 的接口为 GE0/0/2 。 GE0/0/1 、 GE0/0/2 同属于 VLAN2。为控制接入用户数,对 VLAN2 进…

【MySQL】主从同步原理、分库分表

主从同步原理 1. 主从同步原理 MySQL 经常先把命令拷入硬盘的日志,再执行日志的命令,这样的好处: 日志的位置固定,拷入硬盘的开销不大;将命令先准备好,而不是边读边执行,性能更好,…

Android 9.0 系统开启和关闭黑白模式主题功能实现

1. 概述 在9.0的rom系统开发定制化中,在系统SystemUI的下拉状态栏中,产品开发功能需求要求添加黑白模式功能开关的功能,就是打开黑白模式,系统颜色就会变成黑白颜色, 关闭黑白模式开关系统就会变成彩色模式,所以就需要了解下系统是怎么设置黑白模式和彩色模式的,然后添…

基于频率增强的数据增广的视觉语言导航方法(VLN论文阅读)

基于频率增强的数据增广的视觉语言导航方法(VLN论文阅读) 本文提出的方法很简单,将原始图像增加其他随机图像的高频信息,得到增强的图像作为新的样本,与原始的样本交替训练。背后的动机是,vln模型对高频信息…

nginx之重写功能 模块指令 防盗链

一 重写功能 rewrite Nginx服务器利用 ngx_http_rewrite_module 模块解析和处理rewrite请求, 此功能依靠 PCRE(perl compatible regular expression),因此编译之前要安装PCRE库,rewrite是 nginx服务器的重要功能之一,重写功…

【重要公告】BSV区块链协会全新推出“网络访问规则NAR”

​​发表时间:2024年2月15日 BSV区块链协会正式宣布已为BSV区块链推出一套全新的网络访问规则(Network Access Rules,以下简称“NAR”)。 NAR是一整套规则,用于规范BSV协会与BSV网络节点之间的关系。它基于比特币最初…

云计算与大数据课程笔记(一)云计算背景与介绍

如何实现一个简易搜索引擎? 实现一个简易的搜索引擎可以分为几个基本步骤:数据收集(爬虫)、数据处理(索引)、查询处理和结果呈现。下面是一个概括的实现流程: 1. 数据收集(爬虫&am…

SpringCloud Eureka(注册中心)

一、spring cloud简介 spring cloud 为开发人员提供了快速构建分布式系统的一些工具,包括配置管理、服务发现、断路器、路由、微代理、事件总线、全局锁、决策竞选、分布式会话等等。它运行环境简单,可以在开发人员的电脑上跑。另外说明spring cloud是基…

论文笔记:A survey on zero knowledge range proofs and applications

https://link.springer.com/article/10.1007/s42452-019-0989-z 描述了构建零知识区间证明(ZKRP)的不同策略,例如2001年Boudot提出的方案;2008年Camenisch等人提出的方案;以及2017年提出的Bulletproofs。 Introducti…

Vue <script setup>

目录 基本语法 顶层的绑定会被暴露给模板 响应式 使用组件 动态组件 递归组件 命名空间组件 使用自定义指令 defineProps() 和 defineEmits() 针对类型的 props/emit 声明 使用类型声明时的默认 props 值 顶层 await 限制 <script setup> 是在单文件组件 (S…

第二周opencv

一、边缘检测算子 边缘检测算子是用于检测图像中物体边界的工具。边缘通常表示图像中灰度值或颜色发生显著变化的地方。边缘检测有助于识别图像中的物体形状、轮廓和结构。这些算子通过分析图像的灰度或颜色梯度来确定图像中的边缘。 1、Roberts 算子 通过局部差分计算检测边缘…