探索数据结构:解锁计算世界的密码


✨✨ 欢迎大家来到贝蒂大讲堂✨✨

🎈🎈养成好习惯,先赞后看哦~🎈🎈

所属专栏:数据结构与算法
贝蒂的主页:Betty‘s blog

前言

随着应用程序变得越来越复杂和数据越来越丰富,几百万、几十亿甚至几百亿的数据就会出现,而对这么大对数据进行搜索、插入或者排序等的操作就越来越慢,人们为了解决这些问题,提高对数据的管理效率,提出了一门学科即:数据结构与算法

1. 什么是数据结构

**数据结构(Data Structure)**是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。

下标是常见的数据结构:

名称定义
数组(Array)数组是一种聚合数据类型,它是将具有相同类型的若干变量有序地组织在一起的集合。
链表(Linked List)链表是一种数据元素按照链式存储结构进行存储的数据结构,这种存储结构具有在物理上存在非连续的特点。
栈(Stack)栈是一种特殊的线性表,它只能在一个表的一个固定端进行数据结点的插入和删除操作
队列(Queue)队列和栈类似,也是一种特殊的线性表。和栈不同的是,队列只允许在表的一端进行插入操作,而在另一端进行删除操作。
树(Tree)树是典型的非线性结构,它是包括,2 个结点的有穷集合 K
堆(Heap)堆是一种特殊的树形数据结构,一般讨论的堆都是二叉堆。
图(Graph)图是另一种非线性数据结构。在图结构中,数据结点一般称为顶点,而边是顶点的有序偶对

2. 什么是算法

**算法(Algorithm)😗*就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果。

算法一般分为:排序,递归与分治,回溯,DP,贪心,搜索算法

  • 算法往往数学密切相关,就如数学题一样,每道数学题都有不同的解法,算法也是同理。

3. 复杂度分析

3.1 算法评估

我们在进行算法分析时,常常需要完成两个目标**。一个是找出问题的解决方法,另一个就是找到问题的最优解**。而为了找出最优解,我们就需要从两个维度分析:

  • 时间效率:算法运行的快慢
  • 空间效率:算法所占空间的大小

3.2 评估方法

评估时间的方法主要分为两种,一种是实验分析法,一种是理论分析法

(1) 实验分析法

实验分析法简单来说就是将不同种算法输入同一台电脑,统计时间的快慢。但是这种方法有两大缺陷:

  1. 无法排查实验自身条件与环境的条件的影响:比如同一种算法在不同配置的电脑上的运算速度可能完全不同,甚至结果完全相反。我们很难排查所有情况。
  2. 成本太高:同一种算法可能在数据少时表现不明显,在数据多时速率较快
(2) 理论分析法

由于实验分析法的局限性,就有人提出了一种理论测评的方法,就是渐近复杂度分析(asymptotic complexity analysis),简称复杂度分析

这种方法体现算法运行所需的时间(空间)资源与输入数据大小之间的关系,能有效的反应算法的优劣。

4. 时间复杂度与空间复杂度

4.1 时间复杂度

一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

为了准确的表述一段代表所需时间,我们先假设赋值(=)与加号(+)所需时间为1ns,乘号(×)所需时间为2ns,打印所需为3ns。

让我们计算如下代码所需总时间:

int main()
{int i = 1;//1nsint n = 0;//1nsscanf("%d", &n);for (i = 0; i < n; i++){printf("%d ", i);//3ns}return 0;
}

计算时间如下:
T ( n ) = 1 + 1 + 3 × n = 3 n + 2 T(n)=1+1+3×n=3n+2 T(n)=1+1+3×n=3n+2

但是实际上统计每一项所需时间是不现实的,并且由于是理论分析,当n—>∞时,其余项皆可忽略,T(n)的数量级由最高阶决定。所以我们计算时间复杂度时,可以简化为两个步骤:

  1. 忽略除最高阶以外的所有项。
  2. 忽略所有系数。

而上述代码时间可以记为O(n),这种方法被称为大O的渐进表示法。如果计算机结果全是常数,则记为O(1)。

  • 并且计算复杂度时,有时候会出现不同情况的结果,这是应该以最坏的结果考虑。

4.2 空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。空间复杂度的表示也遵循大O的渐进表示法

让我们计算一下冒泡排序的空间复杂度

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i - 1] > a[i]){Swap(&a[i - 1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}
  • 通过观察我们可以看出,冒泡排序并没有开辟多余的空间,所以空间复杂度为O(1).

5. 复杂度分类

算法的复杂度有几个量级,表示如下:
O ( 1 ) < O ( l o g N ) < O ( N ) < O ( N l o g N ) < O ( N 2 ) < O ( 2 N ) < O ( N ! ) O(1) < O( log N) < O(N) < O(Nlog N) < O(N 2 ) < O(2^N) < O(N!) O(1)<O(logN)<O(N)<O(NlogN)<O(N2)<O(2N)<O(N!)

  • 从左到右复杂度依次递增,算法的缺点也就越明显

图示如下:

5.1 常数O(1)阶

常数阶是一种非常快速的算法,但是在实际应用中非常难实现

以下是一种时间复杂度与空间复杂度皆为O(1)的算法:

int main()
{int a = 0;int b = 1;int c = a + b;printf("两数之和为%d\n", c);return 9;
}

5.2 对数阶O(logN)

对数阶是一种比较快的算法,它一般每次减少一半的数据。我们常用的二分查找算法的时间复杂度就为O(logN)

二分查找如下:

int binary_search(int nums[], int size, int target) //nums是数组,size是数组的大小,target是需要查找的值
{int left = 0;int right = size - 1;	// 定义了target在左闭右闭的区间内,[left, right]while (left <= right) {	//当left == right时,区间[left, right]仍然有效int middle = left + ((right - left) / 2);//等同于 (left + right) / 2,防止溢出if (nums[middle] > target) {right = middle - 1;	//target在左区间,所以[left, middle - 1]} else if (nums[middle] < target) {left = middle + 1;	//target在右区间,所以[middle + 1, right]} else {	//既不在左边,也不在右边,那就是找到答案了return middle;}}//没有找到目标值return -1;
}

空间复杂度为O(logN)的算法,一般为分治算法

比如用递归实现二分算法:

int binary_search(int ar[], int low, int high, int key)
{if(low > high)//查找不到return -1;int mid = (low+high)/2;if(key == ar[mid])//查找到return mid;else if(key < ar[mid])return Search(ar,low,mid-1,key);elsereturn Search(ar,mid+1,high,key);
}

每一次执行递归都会对应开辟一个空间,也被称为栈帧

5.3 线性阶O(N)

线性阶算法,时间复杂度与空间复杂度随着数量均匀变化。

遍历数组或者链表是常见的线性阶算法,以下为时间复杂度为O(N)的算法:

int main()
{int n = 0;int count = 0;scanf("%d", &n);for (int i = 0; i < n; i++){count += i;//计算0~9的和}return 0;
}

以下为空间复杂度为O(N)的算法

int main()
{int n = 0;int count = 0;scanf("%d", &n);int* p = (int*)malloc(sizeof(int) * n);//开辟大小为n的空间if (p == NULL){perror("malloc fail");return -1;}free(p);p=NULL;return 0;
}

5.4 线性对数阶O(NlogN)

无论是时间复杂度还是空间复杂度,线性对数阶一般出现在嵌套循环中,即一层的复杂度为O(N),另一层为O(logN)

比如说循环使用二分查找打印:

int binary_search(int nums[], int size, int target) //nums是数组,size是数组的大小,target是需要查找的值
{int left = 0;int right = size - 1;	// 定义了target在左闭右闭的区间内,[left, right]while (left <= right) {	//当left == right时,区间[left, right]仍然有效int middle = left + ((right - left) / 2);//等同于 (left + right) / 2,防止溢出if (nums[middle] > target) {right = middle - 1;	//target在左区间,所以[left, middle - 1]}else if (nums[middle] < target) {left = middle + 1;	//target在右区间,所以[middle + 1, right]}else {	//既不在左边,也不在右边,那就是找到答案了printf("%d ", nums[middle]);}}//没有找到目标值return -1;
}
void func(int nums[], int size, int target)
{for (int i = 0; i < size; i++){binary_search(nums, size, target);}
}

空间复杂度为O(NlogN)的算法,最常见的莫非归并排序

void Merge(int sourceArr[],int tempArr[], int startIndex, int midIndex, int endIndex){int i = startIndex, j=midIndex+1, k = startIndex;while(i!=midIndex+1 && j!=endIndex+1) {if(sourceArr[i] > sourceArr[j])tempArr[k++] = sourceArr[j++];elsetempArr[k++] = sourceArr[i++];}while(i != midIndex+1)tempArr[k++] = sourceArr[i++];while(j != endIndex+1)tempArr[k++] = sourceArr[j++];for(i=startIndex; i<=endIndex; i++)sourceArr[i] = tempArr[i];
}//内部使用递归
void MergeSort(int sourceArr[], int tempArr[], int startIndex, int endIndex) {int midIndex;if(startIndex < endIndex) {midIndex = startIndex + (endIndex-startIndex) / 2;//避免溢出intMergeSort(sourceArr, tempArr, startIndex, midIndex);MergeSort(sourceArr, tempArr, midIndex+1, endIndex);Merge(sourceArr, tempArr, startIndex, midIndex, endIndex);}
}

5.5 平方阶O(N2)

平方阶与线性对数阶相似,常见于嵌套循环中,每层循环的复杂度为O(N)

时间复杂度为O(N2),最常见的就是冒泡排序

void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i - 1] > a[i]){Swap(&a[i - 1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

计算过程如下;
T ( N ) = 1 + 2 + 3 + . . . . . . + n − 1 = ( n 2 − n ) / 2 = O ( n 2 ) T(N)=1+2+3+......+n-1=(n^2-n)/2=O(n^2) T(N)=1+2+3+......+n1=(n2n)/2=O(n2)

空间复杂度为O(N2),最简单的就是动态开辟。

{int n = 0;int count = 0;scanf("%d", &n);int* p = (int*)malloc(sizeof(int) * n*n);//开辟大小为n的空间if (p == NULL){perror("malloc fail");return -1;}free(p);p=NULL;return 0;
}

5.6 指数阶O(2N)

指数阶的算法效率低,并不常用。

常见的时间复杂度为O(2N)的算法就是递归实现斐波拉契数列:

int Fib1(int n)
{if (n == 1 || n == 2){return 1;}else{return Fib1(n - 1) + Fib1(n - 2);}
}

粗略估计
T ( n ) = 2 0 + 2 1 + 2 2 + . . . . . + 2 ( n − 1 ) = 2 n − 1 = O ( 2 N ) T(n)=2^0+2^1+2^2+.....+2^(n-1)=2^n-1=O(2^N) T(n)=20+21+22+.....+2(n1)=2n1=O(2N)

  • 值得一提的是斐波拉契的空间复杂度为O(N),因为在递归至最深处后往回归的过程中,后续空间都在销毁的空间上建立的,这样能大大提高空间的利用率。

空间复杂度为O(2N)的算法一般与树有关,比如建立满二叉树

TreeNode* buildTree(int n) {if (n == 0)return NULL;TreeNode* root = newTreeNode(0);root->left = buildTree(n - 1);root->right = buildTree(n - 1);return root;
}

5.7 阶乘阶O(N!)

阶乘阶的算法复杂度最高,几乎不会采用该类型的算法。

这是一个时间复杂度为阶乘阶O(N!)的算法

int func(int n)
{if (n == 0)return 1;int count = 0;for (int i = 0; i < n; i++) {count += func(n - 1);}return count;
}

示意图:

  • 空间复杂度为阶乘阶O(N!)的算法并不常见,这里就不在一一列举。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/502458.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

家用洗地机如何选?4款详细测评来啦,家用洗地机选购攻略

在智能家居清洁时代&#xff0c;洗地机成为了大多数人的首选&#xff0c;它强大的清洁力以及能够集扫拖吸为一体的清洁方式&#xff0c;既节约了劳动时间成本&#xff0c;也节省了各式各样的清洁工具&#xff0c;让原本繁琐的家务变得简单且高效。那么如何选择适合自己的、满足…

【递归搜索回溯专栏】前言与本专栏介绍

本专栏内容为&#xff1a;递归&#xff0c;搜索与回溯算法专栏。 通过本专栏的深入学习&#xff0c;你可以了解并掌握算法。 &#x1f493;博主csdn个人主页&#xff1a;小小unicorn ⏩专栏分类&#xff1a;递归搜索回溯专栏 &#x1f69a;代码仓库&#xff1a;小小unicorn的代…

adb命令

1. 常用命令&#xff1a; adb devices #查看连接设备adb -s cf27456f shell # 指定连接设备使用命令adb install test.apk # 安装应用adb install -r demo.apk #安装apk 到sd 卡&#xff1a;adb uninstall cn.com.test.mobile #卸载应用&#xff0c;需要指定包adb uninstall -…

设计模式系列文章-7个创建型模式更新已完结

其实从2019年开始就有些一套关于设计模式的系列文章&#xff0c;但是因为种种原因一直搁置到现在。直到2024年才又恢复更新。 24年1月份上旬一直在弄博客站&#xff1a;https://jaune162.blog 的搭建 24年1月份下旬弄专题站&#xff1a;https://books.jaune162.blog 的搭建。…

day06_菜单管理(查询菜单,添加菜单,添加子菜单,修改菜单,删除菜单,角色分配菜单,查询菜单,保存菜单,动态菜单)

文章目录 1 菜单管理1.1 表结构介绍1.2 查询菜单1.2.1 需求说明1.2.2 页面制作1.2.3 后端接口SysMenuSysMenuControllerSysMenuServiceMenuHelperSysMenuMapperSysMenuMapper.xml 1.2.4 前端对接sysMenu.jssysMenu.vue 1.3 添加菜单1.3.1 需求说明1.3.3 页面制作1.3.3 后端接口…

代码随想录算法训练营day29

题目&#xff1a;491_非递减子序列&#xff08;看了题解&#xff09; 给定一个整型数组, 你的任务是找到所有该数组的递增子序列&#xff0c;递增子序列的长度至少是2。 示例: 输入: [4, 6, 7, 7]输出: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7]…

怎样进入powershell状态?怎样获取powershell的help信息?

进入powershell的方法之一&#xff1a;在dos命令窗口运行powershell命令&#xff0c;系统输出版权信息&#xff0c;命令行提示符前面出现PS 标志。说明系统进入powerrshell状态&#xff08;如下图&#xff09;。 获取powershell的help信息方法&#xff1a; 在powershell命令行…

深度学习 精选笔记(8)梯度消失和梯度爆炸

学习参考&#xff1a; 动手学深度学习2.0Deep-Learning-with-TensorFlow-bookpytorchlightning ①如有冒犯、请联系侵删。 ②已写完的笔记文章会不定时一直修订修改(删、改、增)&#xff0c;以达到集多方教程的精华于一文的目的。 ③非常推荐上面&#xff08;学习参考&#x…

202435读书笔记|《半小时漫画中国史》——读点经济学与历史,生活更美好,趣味烧脑土地制度、商鞅变法、华丽丽的丝绸之路这里都有

202435读书笔记|《半小时漫画中国史》——读点经济学与历史&#xff0c;生活更美好&#xff0c;趣味烧脑土地制度、商鞅变法、华丽丽的丝绸之路这里都有 1. 土地政策、度量衡及税收2. 商鞅变法3. 西汉经济4. 西汉盐铁大辩论5. 西汉丝绸之路 《半小时漫画中国史&#xff1a;经济…

软考44-上午题-【数据库】-数据定义语言DDL

一、SQL server数据库的体系结构 SQL server数据库的体系结构是由视图、基本表、存储文件&#xff0c;三级结构组成。 【回顾】&#xff1a;数据库的三级模式结构 视图&#xff1a;外模式 存储文件&#xff1a;内模式 基本表&#xff1a;概念模式 二、SQL语言的分类 SQL语言按…

基于SpringBoot的综合小区管理系统的设计与实现

文章目录 项目介绍主要功能截图&#xff1a;部分代码展示设计总结项目获取方式 &#x1f345; 作者主页&#xff1a;超级无敌暴龙战士塔塔开 &#x1f345; 简介&#xff1a;Java领域优质创作者&#x1f3c6;、 简历模板、学习资料、面试题库【关注我&#xff0c;都给你】 &…

大模型生成,Open API调用

大模型是怎么生成结果的 通俗原理 其实&#xff0c;它只是根据上文&#xff0c;猜下一个词&#xff08;的概率&#xff09;…… OpenAI 的接口名就叫【completion】&#xff0c;也证明了其只会【生成】的本质。 下面用程序演示【生成下一个字】。你可以自己修改 prompt 试试…