深度学习-回顾经典AlexNet网络:山高我为峰

深度学习-回顾经典AlexNet网络之山高我为峰

深度学习中,经典网络引领一波又一波的技术革命,从LetNet到当前最火的GPT所用的Transformer,它们把AI技术不断推向高潮。2012年AlexNet大放异彩,它把深度学习技术引领第一个高峰,打开人们的视野。

用pytorch构建CNN经典网络模型AlexNet,还可以用数据进行训练模型,得到一个优化的模型。

数据分析

数据分析-Pandas如何转换产生新列

数据分析-Pandas如何统计数据概况

数据分析-Pandas如何轻松处理时间序列数据

数据分析-Pandas如何选择数据子集

数据分析-Pandas如何重塑数据表-CSDN博客

经典算法

经典算法-遗传算法的python实现

经典算法-模拟退火算法的python实现

经典算法-粒子群算法的python实现-CSDN博客

AlexNet概述

第一个典型的CNN是LeNet5网络,而第一个引领技术潮流的CNN却是AlexNet。2012年在全球知名的图像识别竞赛 ILSVRC 中,AlexNet 横空出世,直接将错误率降低了近 10 个百分点。这是断崖式的领先。当时AlexNet的影响,和现在chatGPT带来的效应相当。

网络结构

输入图像分辨率:227x227x3 通道

结构:

9层:1个输入层,5个卷积层,2个全连接层,1个输出层,因GPU内存不够,分为上下两组;

(1)C1:11x11 —>输出2组48个55×55大小的特征图–> ReLU --> LRN --> MaxPooling;

(2)C2:5x5 —>输出2组128个27×27大小的特征图–> ReLU --> LRN --> MaxPooling;

(3)C3:3x3 —>输出384个13×13大小的特征图–> ReLU;

(4)C4:3x3 —>输出2组192个13×13大小的特征图–> ReLU;

(5)C5:3x3 —>输出2组128个13×13大小的特征图–> ReLU --> MaxPooling;

(6)FC6 ----> 6x6,输入2组6x6x128特征图,输出4096个1x1全连接层–> ReLU --> Dropout;

(7)FC7 ----> 输入4096个神经元,输出4096个神经元–> ReLU --> Dropout

(8)输出层—> 输入4096个神经元–>softmax -->输出 1000分类

整个AlexNet网络包含的神经元个数为:

290400 + 186624 + 64896 + 64896 + 43264 + 4096 + 4096 + 1000 = 659272

大约65万个神经元

整个AlexNet网络包含的参数数量为:

34944 + 307456 + 885120 + 663936 + 442624 + 37752832 + 16781312 + 4096000 = 60964224

大约6千万个参数

在这里插入图片描述

优势与不足

优势:采用激活函数ReLU,局部响应归一化,使用Dropout机制,Max Pooling重叠池化,双GPU训练,图像尺寸扩大227x227x3。

Pytorch实现

以下便是使用Pytorch实现的经典网络结构AlexNet

# AlexNet 227x227x3
class AlexNet(nn.Module):def __init__(self, channels, num_classes):super(AlexNet, self).__init__()self.features = nn.Sequential(# 输入通道数为3,彩色图片# 输出96、卷积核为11x11,步长为4,是AlexNet模型结构决定nn.Conv2d(channels, 96, kernel_size=11,stride=4, padding=2),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2),nn.Conv2d(96, 256,kernel_size=5, padding=2),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2),nn.Conv2d(256, 384, kernel_size=3, padding=1),nn.ReLU(),nn.Conv2d(384, 384, kernel_size=3,padding=1),nn.ReLU(),nn.Conv2d(384, 256, kernel_size=3,padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2))# 全连接层self.classifier = nn.Sequential(# 全连接的第一层,输入卷积输出的拉平值,即6*6*256# 输出为4096nn.Linear(in_features=6*6*256,out_features=4096),nn.ReLU(),# AlexNet采取了DropOut进行正则,防止过拟合nn.Dropout(p=0.5),nn.Linear(4096,4096),nn.ReLU(),nn.Dropout(p=0.5),# 最后一层,输出1000个类别,也是我们所说的softmax层nn.Linear(4096,num_classes))# 前向算法def forward(self,x):x = self.features(x)x = torch.flatten(x,1)result = self.classifier(x)return result

大家可以和LetNet5对照差异,也可以一窥DeepLearning技术的突破点。

在AlexNet开创一片天地后,CNN网络引领的深度学习蓬勃发展,造就人工智能技术革命的起点。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/502602.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity游戏项目中的优化之摄像机视锥体剔除优化

在项目中一个完成的游戏场景一般都会有成千上百的物体,假如都去让GPU全部渲染一遍,那带来的消耗其实是挺大的,很多不在摄像机范围内的物体其实没有必要去渲染,尽管GPU自带剔除,但是如果从CPU阶段就提交给GPU指令——哪…

解锁AI大模型秘籍:未来科技的前沿探索

在当今这个技术高速发展的时代,人工智能(AI)已经成为了我们生活中不可或缺的一部分。从简单的个人助手到复杂的数据分析和决策制定,AI的应用范围日益扩大,其目的是为了让我们的生活变得更加智能化。本文旨在探讨AI如何…

c++数据结构算法复习基础-- 2 -- 线性表-单链表-常用操作接口-复杂度分析

1、链表 特点 每一个节点都是在堆内存上独立new出来的, 节点内存不连续优点 内存利用率高,不需要大块连续内存 插入和删除节点不需要移动其它节点,时间复杂度O(1)。 不需要专门进行扩容操作缺点 内存占用量大,每一个节点多出存…

【HTML】HTML基础4(超链接标签)

目录 超链接通用标签 链接分类及其使用 1.外部链接 ​编辑 2.内部链接 3.空链接 4.下载链接 超链接通用标签 <a href"跳转目标" target"目标窗口的弹出方式">文本或者图像</a> 用到的是&#xff1a;<a></a>双标签 其中 1. he…

微软开源 SBOM 生成工具:sbom-tool下载及使用详解

github地址 GitHub - microsoft/sbom-tool: The SBOM tool is a highly scalable and enterprise ready tool to create SPDX 2.2 compatible SBOMs for any variety of artifacts.The SBOM tool is a highly scalable and enterprise ready tool to create SPDX 2.2 compatib…

LeetCode_Java_动态规划系列(2)(题目+思路+代码)

131.分割回文串 给你一个字符串 s&#xff0c;请你将 s 分割成一些子串&#xff0c;使每个子串都是 回文串 。返回 s 所有可能的分割方案。 回文串 是正着读和反着读都一样的字符串。 示例 1&#xff1a; 输入&#xff1a;s "aab" 输出&#xff1a;[["a&qu…

MySQL 多表查询 连接查询 外连接

介绍 MySQL 多表查询 连接查询 内连接 外连接分为两种&#xff0c;左外和右外连接&#xff0c; 左外&#xff1a;相当于查询表1(左表)的所有数据 包含 表1和表2交集部分的数据,完全包含左表的数据 右外&#xff1a;相当于查询表2(右表)的所有数据 包含 表1和表2交集部分的数据…

DDD设计学习

之前在研究生项目中遇到的问题便是&#xff1a; 随着业务需求的不断改变&#xff0c;需要在原有项目代码中不断进行修改&#xff0c;导致代码不断累积。 那如何构建高质量应用&#xff0c;那就要遵循三大设计原则&#xff1a; 1.单一职责原则&#xff1a;一个类只负责单一的职…

frp 内网穿透 linux部署版

frp 内网穿透 linux部署版 前提安装 frp阿里云服务器配置测试服务器配置访问公网 前提 使用 frp&#xff0c;您可以安全、便捷地将内网服务暴露到公网&#xff0c;通过访问公网 IP 直接可以访问到内网的测试环境。准备如下&#xff1a; 公网 IP已部署好的测试服务 IP:端口号阿…

Harbor 的安装及使用

Harbor 安装官网手册&#xff1a; https://goharbor.io/docs/2.10.0/install-config/download-installer/ Harbor 发布包地址&#xff1a; https://github.com/goharbor/harbor/releases Harbor 的架构查看&#xff1a; https://github.com/goharbor/harbor/wiki/Architectur…

Redis 存储原理和数据模型

redis 是不是单线程 redis 单线程指的是命令处理在一个单线程中。主线程 redis-server&#xff1a;命令处理、网络事件的监听。 辅助线程 bio_close_file&#xff1a;异步关闭大文件。bio_aof_fsync&#xff1a;异步 aof 刷盘。bio_lazy_free&#xff1a;异步清理大块内存。io_…

【C++精简版回顾】15.继承派生

1.继承派生的区别 继承&#xff1a;子继父业&#xff0c;就是子类完全继承父类的全部内容 派生&#xff1a;子类在父类的基础上发展 2.继承方式 1.public继承为原样继承 2.protected继承会把public继承改为protect继承 3.private继承会把public&#xff0c;protected继承改为pr…