【YOLO v5 v7 v8 小目标改进】新CNN架构 InceptionNeXt:怎么让大卷积核既好用又快

新CNN架构 InceptionNeXt:怎么让大卷积核既好用又快

    • 提出背景
      • 问题: 如何提高大核心卷积的效率,同时保持或提升模型性能?
    • 改进思路
      • MetaNeXt
      • Inception深度卷积
      • InceptionNeXt
    • 小目标涨点
      • YOLO v5 魔改
      • YOLO v7 魔改
      • YOLO v8 魔改

 


提出背景

论文:https://arxiv.org/pdf/2303.16900.pdf

代码:https://github.com/sail-sg/inceptionnext

 

受到视觉变换器(ViTs)长距离建模能力的启发,近期广泛研究并采用了大核心卷积技术,以扩大感受野并提高模型性能,像是ConvNeXt的杰出工作所示,它采用了7×7深度卷积。

虽然这种深度操作只消耗少量的浮点操作数(FLOPs),但由于高内存访问成本,在强大的计算设备上大大降低了模型效率。

目前仍不清楚如何在保持性能的同时加速基于大核心的CNN模型。

为了解决这一问题,受到Inception的启发,我们提议将大核心深度卷积分解为沿着通道维度的四个并行分支,即小正方形核心、两个正交的带状核心以及一个恒等映射。

通过这种新型的Inception深度卷积,我们构建了一系列网络,命名为IncepitonNeXt,它们不仅具有高吞吐量,还保持了竞争力的性能。

在这里插入图片描述
InceptionNeXt模型在保持与ConvNeXt(大卷积核)相近的准确率的同时,训练速度提高了约1.6倍,这表明InceptionNeXt在效率和性能之间取得了良好的平衡。

  1. 部分通道不进行深度卷积操作:我们的初步发现表明,并非所有输入通道都需要进行计算成本高昂的深度卷积操作。

    因此,我们提出只对部分通道进行深度卷积操作,而其他通道保持不变。

    这是因为深度卷积操作的高计算成本特性。

  2. 将大核心深度卷积分解为多组小核心卷积:接着,我们提出将大核心的深度卷积分解为几组小核心的卷积,采用Inception风格。

    具体来说,对于进行处理的通道,1/3的通道使用3×3的核心,1/3的通道使用1×k的核心,剩余1/3的通道使用k×1的核心。

    这种方法是因为大核心深度卷积的内存访问成本高和速度慢的特征。

问题: 如何提高大核心卷积的效率,同时保持或提升模型性能?

  • 解法: 通过改进大核心卷积的结构和计算方法来提高效率,同时保持性能。
    • 子特征1: 采用堆叠3×3卷积替代大核心卷积,如VGG模型所示。
      • 原因: 通过重复使用小核心卷积,可以在不牺牲感受野的情况下提高计算效率。
    • 子特征2: 将k×k卷积分解为1×k和k×1的卷积顺序堆叠,如Inception v3所做。
      • 原因: 该方法通过减少参数数量和计算量来提高大核心卷积的效率。
    • 子特征3: 分解大核心卷积为多个小组的小核心卷积,以及采用结构重参数化技术等。
      • 原因: 这些方法旨在简化大核心卷积的计算,提高模型的运行速度,同时尽可能保持模型的性能。

在这里插入图片描述
四种不同的模型块结构:MetaFormer块、MetaNeXt块、ConvNeXt块和InceptionNeXt块。

这些块是构建深度学习模型时的基本单元。

MetaFormer块是一个基础结构,包含了标准的MLP和Normalization层,以及一个用于空间信息交互的Token Mixer。

MetaNeXt块是从ConvNeXt块简化而来的,合并了MetaFormer的两个残差子块。

ConvNeXt块采用了7x7的深度卷积作为Token Mixer,而InceptionNeXt块则采用了分解的Inception风格深度卷积,将大核心卷积分解为更小的多个并行分支,这样做可以提高效率。

改进思路

MetaNeXt提供了改进空间信息处理效率的初始框架,Inception深度卷积进一步针对深度卷积的效率进行了优化,最后,InceptionNeXt模型整合了这些优化,构建出既高效又性能卓越的CNN模型。

  1. MetaNeXt构建相当于大楼的设计蓝图

    • 就像建筑师设计摩天大楼的蓝图一样,MetaNeXt提供了一个初始框架,确立了基本结构和核心功能。这一步骤确保了大楼(即模型)在满足基本需求的同时,能够高效处理空间信息,为后续的优化和提升奠定基础。
  2. Inception深度卷积的创新类似于引入高效的建筑材料和先进的施工技术

    • 正如建筑师选择轻质但强度高的材料,以及采用先进技术来提升建造效率和建筑性能,Inception深度卷积通过优化深度卷积操作,将大核心操作分解为多个小核心操作,类似于采用更高效的材料和技术来提升整个大楼的建造效率和性能。
  3. InceptionNeXt模型的构建就像是最终将设计蓝图和先进材料技术整合,建成一座摩天大楼

    • 在有了设计蓝图(MetaNeXt构建)和高效的建筑材料及技术(Inception深度卷积)之后,建筑师和工程师合作,将这些元素整合起来,建造出既美观又高效的摩天大楼。InceptionNeXt模型正是将MetaNeXt的基础框架和Inception深度卷积的优化技术整合在一起,构建出一个既高效又性能卓越的CNN模型,它能够在处理复杂视觉任务时展现出卓越的性能。

就像是从设计蓝图到选择材料和技术,再到最终建造出一座现代化、高效的摩天大楼的整个过程。

MetaNeXt

  • 问题: 如何提高模型在处理空间信息时的效率和性能?需要一个高效处理空间信息的模型结构。

  • 解法: 提出MetaNeXt块,将深度卷积抽象为token混合器,负责空间信息交互。

    • 子特征1: 使用TokenMixer简化深度卷积过程。
      • 原因: 为了在保持空间信息交互能力的同时提高处理速度和简化模型结构。
    • 子特征2: 在MetaNeXt块中采用标准化和MLP模块以及1×1卷积。
      • 原因: 这些操作有助于进一步提升模型的特征提取能力和计算效率。

提出MetaNeXt块,使用TokenMixer简化深度卷积,增加标准化和MLP模块以及1×1卷积,以提高处理速度和简化模型结构,同时保持空间信息交互能力。

MetaNeXt块的设计提供了改进深度卷积处理效率和性能的基础框架,为进一步的优化铺平了道路。

Inception深度卷积

  • 问题: 如何解决传统大核心深度卷积在模型速度上的瓶颈?

  • 解法: 提出Inception深度卷积,通过分解大核心操作为多个小核心操作来提高效率。

    • 子特征1: 对输入通道进行分组,部分通道保持不变,作为恒等映射分支。
      • 原因: 研究表明,对于深度卷积层,处理部分通道就足够,这有助于减少计算负担。
    • 子特征2: 将处理的通道通过不同的小核心分支进行并行处理。
      • 原因: 通过避免使用大的方形核心,而是采用小的方形核心和带状核心,可以在不牺牲感受野的前提下提高计算效率。

通过Inception深度卷积的设计,将大核心操作分解为多个小核心操作,对输入通道进行分组并通过不同的小核心分支并行处理。

Inception深度卷积的提出直接针对MetaNeXt块中深度卷积的效率问题,通过更细致的操作优化,实现了更高的计算效率和性能。

这一创新是基于MetaNeXt设计理念的进一步发展和精细化。

InceptionNeXt

  • 问题: 如何构建一个既高效又性能卓越的CNN模型?
  • 解法: 基于InceptionNeXt块构建一系列模型,采用四阶段框架,并根据ConvNeXt的设计指导原则进行调整。
    • 子特征1: 模型采用四阶段框架,与ConvNeXt和ResNet类似。
      • 原因: 这种框架结构被证明能有效提升深度学习模型的性能,同时保持良好的计算效率。
    • 子特征2: 利用Inception深度卷积在每个阶段内部提升效率和性能。
      • 原因: Inception深度卷积通过分解大核心操作为多个并行的小核心操作,实现了更好的速度-准确度权衡。

基于InceptionNeXt块,采用四阶段框架,并根据ConvNeXt的设计指导原则进行调整,整合Inception深度卷积的优化。

InceptionNeXt模型的构建是对MetaNeXt构建和Inception深度卷积设计理念的实际应用和综合体现。

它将MetaNeXt的基础设计理念和Inception深度卷积的具体实现策略相结合,通过一系列精心设计的模型框架,实现了对深度学习模型性能和效率的最优化。

通过这种方法论的分解,我们不仅解决了传统深度卷积操作效率低下的问题,还提出了一种新的CNN架构,即InceptionNeXt,它通过简化和优化卷积操作来提高模型的整体性能和效率。

小目标涨点

更新中…

YOLO v5 魔改

YOLO v7 魔改

YOLO v8 魔改

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/503786.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【MySQL】mvcc以及三个重要日志

🍎个人博客:个人主页 🏆个人专栏:【】数据库 ⛳️ 功不唐捐,玉汝于成 目录 前言 正文 MVCC关键概念: MVCC机制的优点: 三个重要的日志: 重做日志: 回滚日志&am…

从金蝶云星空到四化智造MES(API)通过接口配置打通数据

从金蝶云星空到四化智造MES(API)通过接口配置打通数据 数据源平台:金蝶云星空 金蝶K/3Cloud(金蝶云星空)是移动互联网时代的新型ERP,是基于WEB2.0与云技术的新时代企业管理服务平台。金蝶K/3Cloud围绕着“生态、人人、…

c语言的数据结构:队列

1.队列存在的实现方式及其存在意义 1.1为什么队列使用单链表实现更好 动态内存分配:链表在C语言中通常使用动态内存分配,这意味着可以在运行时根据需要动态地添加或删除节点。这对于实现一个动态大小的队列非常有用,因为队列的大小可以在运…

外链工具,热门的外链工具

在网络推广和搜索引擎优化中,外链工具是提升网站排名和曝光度的关键。本文将介绍一些外链工具,以及它们的作用和用途。 外链工具有哪些? 147SEO工具: 147SEO工具是一款提升网站收录的外链工具,用户可以通过147SEO工具…

antvX6 - Vue自定义节点,并实现多种画布操作,拖拽、缩放、连线、双击、检索等等

一、 首先 antv x6 分为两个版本 低版本和高版本 我这里是使用的2.0版本 并且搭配了相关插件 例如:画布的图形变换、地图等 个人推荐 2.0版本,高版本配置多,可使用相关插件多,但是文档描述小,仍在更新, 低…

JavaWeb之 Web概述

目录 前言1.1 Web和 JavaWeb的概念1.2 JavaWeb技术栈1.2.1 B/S架构1.2.2 静态资源1.2.3 动态资源1.2.4 数据库1.2.5 HTTP协议1.2.6 Web服务器 1.3 JavaWeb 学习内容 前言 博主将用 CSDN 记录 Java 后端开发学习之路上的经验,并将自己整理的编程经验和知识分享出来&a…

yolo目标检测实战

该博客主要介绍了: 1. 如何制作yolo目标检测数据集 2.如何在自己的数据集上训练yolo 3.训练好后的模型如何进行推理 1.数据标注 关于数据如何标注,请查看这篇博文 2.数据集目录结构 重点关注红框内部的结构 images: 图片目录 images/train: 训练集…

Zookeeper学习1:概述、安装、应用场景、集群配置

文章目录 概述安装LinuxWindows 配置参数集群参考配置文件配置步骤流程启动 概述 Zookeeper: 为分布式框架组件提供协调服务的中间件 【类似:文件系统通知机制】 负责存储上下层应用关系的数据以及接收观察者注册监听,一旦观察查关心的数据发…

npm与包

包 包的概念 Node.js中的第三方模块又叫做包。包的来源 由第三方个人或团队开发出来的,免费提供给所有人使用。为什么需要包 由于Node.js内置模块仅提供了一些底层的API,导致在基于内置模块进行项目开发时,效率很低。包是基于内置模块封装出…

在idea中用模板骨架初始创建maven管理的web项目时没有src有关的目录的解决方案

一.问题如下 二.解决方法 首先关闭当前项目,接着修改全局设置,重新创建项目 在VM Options中添加"-DarchetypeCataloginternal",点击ok保存 点击创建,如果创建成功没报错且有src,就ok了。 当然如果出现以下…

Avalonia学习(二十八)-OpenGL

Avalonia已经继承了opengl,详细的大家可以自己查阅。Avalonia里面启用opengl继承OpenGlControlBase类就可以了。有三个方法。分别是初始化、绘制、释放。 这里把官方源码的例子扒出来给大家看一下。源码在我以前发布的单组件里面。地址在前面的界面总结博文里面。 …

vue cesium加载点与定位到指定位置

vue cesium定位到指定位置 window.viewer.camera.flyTo({destination: Cesium.Cartesian3.fromDegrees(point.longDeg, point.latDeg, 6500000), orientation: {heading: 6.2079384332084935, roll: 0.00031509431759868534, pitch: -1.535}, duration: 3})vue cesium加载点 …