基于CNN-LSTM-Attention的时间序列回归预测matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1卷积神经网络(CNN)在时间序列中的应用

4.2 长短时记忆网络(LSTM)处理序列依赖关系

4.3 注意力机制(Attention)

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

.............................................................
%格式转换
for i = 1 : Num1Nsp_train2{i} = Nsp_train(:,:,1,i);
endfor i = 1 : Num2Nsp_test2{i}  = Nsp_test(:,:,1,i);
end%CNN-LSTM-ATT
layers = func_model(Dim);%数据预测
Dpre1 = predict(Net, Nsp_train2);
Dpre2 = predict(Net, Nsp_test2);%归一化还原
T_sim1=Dpre1*Vmax2;
T_sim2=Dpre2*Vmax2;%网络结构
analyzeNetwork(Net)figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...'LineWidth',2,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]);legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
grid onsubplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...'LineWidth',2,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]);
legend('真实值', '预测值')
xlabel('测试样本')
ylabel('测试结果')
grid onsubplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);
115

4.算法理论概述

        时间序列预测是许多领域中的核心问题,如金融市场分析、气候预测、交通流量预测等。近年来,深度学习在时间序列分析上取得了显著的成果,尤其是卷积神经网络(CNN)、长短时记忆网络(LSTM)和注意力机制(Attention)的结合使用。

4.1卷积神经网络(CNN)在时间序列中的应用

      在时间序列数据中,CNN用于提取局部特征和模式。对于一个长度为T的时间序列数据X = [x_1, x_2, ..., x_T],通过卷积层可以生成一组特征映射:

       CNN通过多个卷积层和池化层的堆叠来提取输入数据的特征。每个卷积层都包含多个卷积核,用于捕捉不同的特征。池化层则用于降低数据的维度,减少计算量并增强模型的鲁棒性。

4.2 长短时记忆网络(LSTM)处理序列依赖关系

       LSTM单元能够有效捕捉时间序列中的长期依赖关系。在一个时间步t,LSTM的内部状态h_t和隐藏状态c_t更新如下:

       长短时记忆网络是一种特殊的循环神经网络(RNN),设计用于解决长序列依赖问题。在时间序列预测中,LSTM能够有效地捕捉时间序列中的长期依赖关系。

4.3 注意力机制(Attention)

       注意力机制是一种让模型能够自动地关注输入数据中重要部分的技术。在时间序列预测中,注意力机制可以帮助模型关注与当前预测最相关的历史信息。

       CNN-LSTM-Attention模型结合了CNN、LSTM和Attention三种技术的优势。首先,使用CNN提取时间序列中的局部特征;然后,将提取的特征输入到LSTM中,捕捉时间序列中的长期依赖关系;最后,通过注意力机制对LSTM的输出进行加权,使模型能够关注与当前预测最相关的历史信息。具体来说,模型的流程如下:

  1. 使用CNN处理原始时间序列数据,提取局部特征。这可以通过多个卷积层和池化层的堆叠来实现。
  2. 将CNN的输出作为LSTM的输入,捕捉时间序列中的长期依赖关系。这里可以使用多层LSTM来增强模型的表达能力。
  3. 在LSTM的输出上应用注意力机制,计算每个历史时刻的注意力权重,并生成上下文向量。这个上下文向量包含了所有历史时刻的信息,但已经根据当前时刻的查询进行了加权。
  4. 将上下文向量与当前时刻的输入或隐藏状态进行融合,生成最终的预测结果。这可以通过一个简单的全连接层来实现。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/504890.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JVM垃圾回收详解

JVM垃圾回收详解 JavaGuide JDK7版本以及JDK7版本之前,堆内存通常分为下面三部分: 新生代(年轻代)内存老年代永久代 下图中的Eden区、两个S区S0、S1都属于新生代 JDK8版本之后永久代被元空间取代,元空间使用的是直…

洛谷题单_递推与递归

P1255 数楼梯 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) //不满分做法&#xff1a;没有高精度 #include <bits/stdc.h> using namespace std; const int N5006; int dp[N];//dp[i]表示到第i节楼梯有dp[i]中方案 int main(){int n;cin>>n;dp[1]1;dp[0]1;for(i…

Docker实战——网络通信

目录 一、Docker 容器网络通信的基本原理1、查看 Docker 容器网络&#xff08;1&#xff09;新建一个 Dockerfile文件&#xff0c;内容如下&#xff1a;&#xff08;2&#xff09;使用以下命令创建镜像&#xff08;3&#xff09;基于 debian 的镜像创建一个容器&#xff0c;并进…

[C++]AVL树怎么转

AVL树是啥 一提到AVL树&#xff0c;脑子里不是旋了&#xff0c;就是悬了。 AVL树之所以难&#xff0c;并不是因为结构难以理解&#xff0c;而是因为他的旋转。 AVL树定义 平衡因子&#xff1a;对于一颗二叉树&#xff0c;某节点的左右子树高度之差&#xff0c;就是该节点的…

第三百七十八回

文章目录 1. 概念介绍2. 实现方法2.1 maskFilter2.2 shader 3. 代码与效果3.1 示例代码3.2 运行效果 4. 内容总结 我们在上一章回中介绍了"两种阴影效果"相关的内容&#xff0c;本章回中将介绍如何绘制阴影效果.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概…

【C++庖丁解牛】类与对象

&#x1f4d9; 作者简介 &#xff1a;RO-BERRY &#x1f4d7; 学习方向&#xff1a;致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 &#x1f4d2; 日后方向 : 偏向于CPP开发以及大数据方向&#xff0c;欢迎各位关注&#xff0c;谢谢各位的支持 目录 1.面向过程和面向对象…

构建大语言模型的四个主要阶段

大规模语言模型的发展历程虽然只有短短不到五年的时间&#xff0c;但是发展速度相当惊人&#xff0c;国内外有超过百种大模型相继发布。中国人民大学赵鑫教授团队在文献按照时间线给出 2019 年至 2023 年比较有影响力并且模型参数量超过 100 亿的大规模语言模型。大规模语言模型…

基于雷达影像的洪水监测技术方法详解

洪水发生时候大多数是阴雨天气&#xff0c;光学影像基本上拍不到有效影像。雷达影像这时候就能发挥其不受天气影像的优点。现在星载的雷达卫星非常多&#xff0c;如高分三号、陆探一号、海丝一号&#xff08;巢湖一号&#xff09;、哨兵1号等。本文以哨兵1号L1地距(GRD)产品来介…

【初中生讲机器学习】13. 决策树算法一万字详解!一篇带你看懂!

创建时间&#xff1a;2024-03-02 最后编辑时间&#xff1a;2024-03-02 作者&#xff1a;Geeker_LStar 你好呀~这里是 Geeker_LStar 的人工智能学习专栏&#xff0c;很高兴遇见你~ 我是 Geeker_LStar&#xff0c;一名初三学生&#xff0c;热爱计算机和数学&#xff0c;我们一起加…

电子电器架构 —— DoIP协议相关的介绍

电子电器架构 —— DoIP协议相关的介绍 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 没有人关注你。也无需有人关注你。你必须承认自己的价值,你不能站在他人的角度来反对自己。人生在世,最怕…

Excel 按奇数偶数列处理数据

目录 一. 需求背景1.1 获取偶数列的数据1.2 奇偶列数据互换 二. 解决方式2.1 为列添加奇偶辅助列2.2 通过公式将奇偶列互换 一. 需求背景 1.1 获取偶数列的数据 ⏹ 最近在整理歌单&#xff0c;发现部分歌曲没有歌词&#xff0c;于是打算自己制作一份。 从网上找到了歌词&…

【Spring IoC】实验四:特殊值处理

个人名片&#xff1a; &#x1f43c;作者简介&#xff1a;一名大三在校生&#xff0c;喜欢AI编程&#x1f38b; &#x1f43b;‍❄️个人主页&#x1f947;&#xff1a;落798. &#x1f43c;个人WeChat&#xff1a;hmmwx53 &#x1f54a;️系列专栏&#xff1a;&#x1f5bc;️…