【机器学习】FashionMNIST数据集简介及下载方法(自动下载)

【机器学习】FashionMNIST数据集简介及下载方法(自动下载)

在这里插入图片描述

🌈 个人主页:高斯小哥
🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程👈 希望得到您的订阅和支持~
💡 创作高质量博文(平均质量分92+),分享更多关于深度学习、PyTorch、Python领域的优质内容!(希望得到您的关注~)


🌵文章目录🌵

  • 📚一、FashionMNIST数据集简介
  • 🤔二、为什么选择FashionMNIST?
  • 💻三、利用PyTorch自动下载FashionMNIST数据集
  • 💡四、一些建议和资源
  • ❤️五、感谢与期待

  大家好!今天我们要一起探讨的是一个在机器学习领域非常受欢迎的数据集——FashionMNIST。那么,让我们开始吧!🚀

📚一、FashionMNIST数据集简介

  FashionMNIST是一个包含60,000个训练样本和10,000个测试样本的衣物、鞋子和包等时尚物品的图像数据集。每个样本都是28x28的灰度图像。

  这个数据集非常适合用于训练和测试机器学习模型,特别是图像分类算法。通过使用FashionMNIST,你可以学习到如何对图像进行预处理、构建卷积神经网络(CNN)以及其他与图像相关的机器学习技术。

🤔二、为什么选择FashionMNIST?

你可能会问,为什么我们要选择FashionMNIST而不是其他数据集呢?这里有几个原因:

  1. 多样性:FashionMNIST包含了10个不同的类别,涵盖了各种时尚单品,这使得模型需要学习更多的特征来区分不同的类别。
  2. 实用性:时尚单品的图像识别在现实生活中有很多应用场景,比如电商平台的商品推荐、智能购物等。
  3. 易于使用:FashionMNIST的数据格式与MNIST相似,这意味着你可以轻松地使用现有的机器学习框架和工具来加载和处理这个数据集。

💻三、利用PyTorch自动下载FashionMNIST数据集

  现在,让我们来看看如何使用PyTorch自动下载FashionMNIST数据集。首先,确保你已经安装了PyTorch。如果还没有安装,请访问快速搭建PyTorch环境:Miniconda一步到位并按照指示进行安装。

  一旦你安装了PyTorch,就可以使用torchvision库来自动下载FashionMNIST数据集。torchvision是PyTorch的一个扩展库,提供了许多计算机视觉相关的数据集和模型。

以下是一个简单的代码示例,展示如何使用torchvision下载并加载FashionMNIST数据集:

import torch
from torchvision import datasets, transforms# 定义数据转换
transform = transforms.Compose([transforms.ToTensor(),  # 将图像转换为张量transforms.Normalize((0.5,), (0.5,))  # 对图像进行归一化
])# 下载并加载训练集
trainset = datasets.FashionMNIST('~/.pytorch/F_MNIST_data/', download=True, train=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)# 下载并加载测试集
testset = datasets.FashionMNIST('~/.pytorch/F_MNIST_data/', download=True, train=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=True)

  在这个示例中,我们首先定义了一个数据转换流程,包括将图像转换为张量和进行归一化。然后,我们使用datasets.FashionMNIST类下载并加载训练集和测试集。通过设置download=True参数,PyTorch会自动下载数据集(如果本地不存在的话)。最后,我们使用DataLoader类创建一个数据加载器,用于在训练过程中迭代访问数据。

  现在你已经成功地下载并加载了FashionMNIST数据集!接下来,你可以使用这个数据集来训练你的机器学习模型了。🎉

💡四、一些建议和资源

在你开始使用FashionMNIST数据集进行机器学习实验之前,这里有一些建议和资源供你参考:

  1. 数据预处理:除了上面提到的归一化之外,你还可以尝试其他的数据预处理技术,如数据增强(旋转、裁剪、翻转等)以增加模型的泛化能力。
  2. 模型选择:你可以从简单的多层感知器(MLP)开始尝试,然后逐渐过渡到更复杂的模型,如卷积神经网络(CNN)。CNN在图像分类任务上通常表现更好。
  3. 学习率调度:在训练过程中动态调整学习率可以帮助模型更快地收敛并避免过拟合。你可以尝试使用PyTorch提供的学习率调度器来实现这一点。
  4. 评估指标:除了准确率之外,你还可以使用其他评估指标来全面评估你的模型性能,如精确率、召回率和F1分数等。

祝你在使用FashionMNIST数据集的机器学习实验中取得成功!🎈

❤️五、感谢与期待

  感谢你阅读本文并跟随我们一起了解FashionMNIST数据集!我们希望通过这篇文章能够激发你对机器学习的兴趣和热情,并为你提供有价值的信息和资源。

  我们期待看到你在使用FashionMNIST数据集进行机器学习实验时取得的成果和进步!如果你有任何问题、建议或经验想要分享,请随时联系我们或在评论区留言。让我们一起学习、成长和进步!👫👭👬

  再次感谢你的支持和关注!祝你在机器学习的旅程中一切顺利!🌟💫

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/505118.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[c 语言] 大端,小端;网络序,主机序

在网络编程中,特别是底层网卡驱动开发时,常常遇到字节序问题。字节序指的是多字节数据类型在内存中存放的顺序,高位保存在低地址还是高地址,以此来划分大端还是小端。 1 大端和小端 大端和小端指的是 cpu 的属性,常见…

Linux命名管道

Linux匿名管道-CSDN博客 目录 1.原理 2.接口实现 3.模拟日志 Linux匿名管道-CSDN博客 这上面叫的是匿名管道,不要将两者搞混,匿名管道说的是两个有血缘关系的进程相互通信,但是命名管道就是两个没有关系的管道相互通信。 1.原理 和匿名…

智能驾驶规划控制理论学习03-基于采样的规划方法

目录 一、基于采样的规划方法概述 二、概率路图(PRM) 1、核心思想 2、实现流程 3、算法描述 4、节点连接处理 5、总结 三、快速搜索随机树(RRT) 1、核心思想 2、实现流程 3、总结 4、改进RRT算法 ①快速搜索随机图&a…

Docker知识点总结二

四、 Docker 架构 Docker使用客户端-服务器(C/S)架构模式,使用远程API来管理和创建Docker容器。 介绍: 1、Docker的客户端client,我们在命令行发送一些信息(命令)给Docker服务端。2、中间这个就是Docker的服务端,在这个服务端里面…

优选算法|【双指针】|1089.复写零

目录 题目描述 题目解析 算法原理讲解 代码 题目描述 1089. 复写零 给你一个长度固定的整数数组 arr ,请你将该数组中出现的每个零都复写一遍,并将其余的元素向右平移。 注意:请不要在超过该数组长度的位置写入元素。请对输入的数组 就…

初学者如何快速搭建基于 Selenium Grid 的分布式自动化

Selenium Grid是一个测试工具,它允许我们在不同的机器上针对不同的浏览器运行测试。 配置Hub 为了简单起见,我们将只使用一台机器来设置Hub,并在同一台机器上设置Node来运行测试。 1.需要安装Java 11或更高版本 2.需要安装浏览器 3.需要…

【Python】进阶学习:pandas--isin()用法详解

【Python】进阶学习:pandas–isin()用法详解 🌈 个人主页:高斯小哥 🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程👈 希望得到您的订阅…

【简略知识】项目开发中,VO,BO,PO,DO,DTO究竟是何方妖怪?

前言 在项目开发中,是否需要定义VO(视图对象),BO(业务对象),PO(持久化对象),DO(领域对象),DTO(数据传输对象&…

2.1 mov、add和sub加减指令实操体验

汇编语言 1. mov操作 1.1 mov移动值 mov指令把右边的值移动到左边 mount c d:masm c: debug r ax 0034 r 073f:0100 mov ax,7t1.2 mov移动寄存器的值 把右边寄存器的值赋值给左边的寄存器 a 073f:0105 mov bx,axt1.3 mov高八位(high)和低八位&am…

求职招聘类App如何打造的更卓越:解析关键功能和发展趋势

随着人才市场的竞争日益激烈,求职招聘类App成为现代职场中不可或缺的工具。对您来说,一款卓越的求职招聘类App满足您用户的多样化需求是很有必要的。在这篇文章中,我们将深入探讨其关键功能和行业发展趋势,助您的App在市场中脱颖而…

腾讯云学生服务器使用教程_申请腾讯云学生机详细流程

2024年腾讯云学生服务器优惠活动「云校园」,学生服务器优惠价格:轻量应用服务器2核2G学生价30元3个月、58元6个月、112元一年,轻量应用服务器4核8G配置191.1元3个月、352.8元6个月、646.8元一年,CVM云服务器2核4G配置842.4元一年&…

overleaf上传到arxiv 参考文献无法引用(?)

记一下overleaf上传到arxiv的bug 参考文献无法引用(?) 因为需要上传bbl文件而不是bib 用overleaf生成bbl 另外需要将bbl和txt的文件名设置成一样的