超强预测算法:XGBoost预测模型

目录

 往期精彩内容:

多变量特征序列、单序列数据预测实战

前言

1 风速数据预处理与数据集制作

1.1 导入数据

1.2 多变量数据预处理与数据集制作

1.3 单序列数据预处理与数据集制作

2超强模型XGBoost——原理介绍

3 模型评估和对比

3.1 随机森林预测模型

3.2 支持向量机SVM预测模型

3.3 XGBoost分类模型

代码、数据如下:


 往期精彩内容:

时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较-CSDN博客

风速预测(一)数据集介绍和预处理-CSDN博客

风速预测(二)基于Pytorch的EMD-LSTM模型-CSDN博客

风速预测(三)EMD-LSTM-Attention模型-CSDN博客

风速预测(四)基于Pytorch的EMD-Transformer模型-CSDN博客

风速预测(五)基于Pytorch的EMD-CNN-LSTM模型-CSDN博客

风速预测(六)基于Pytorch的EMD-CNN-GRU并行模型-CSDN博客

CEEMDAN +组合预测模型(BiLSTM-Attention + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(CNN-LSTM + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(Transformer - BiLSTM+ ARIMA)-CSDN博客

 CEEMDAN +组合预测模型(CNN-Transformer + ARIMA)-CSDN博客

多特征变量序列预测(一)——CNN-LSTM风速预测模型-CSDN博客

多特征变量序列预测(二)——CNN-LSTM-Attention风速预测模型-CSDN博客

多特征变量序列预测(三)——CNN-Transformer风速预测模型-CSDN博客

多特征变量序列预测(四)Transformer-BiLSTM风速预测模型-CSDN博客

多特征变量序列预测(五) CEEMDAN+CNN-LSTM风速预测模型-CSDN博客

多特征变量序列预测(六) CEEMDAN+CNN-Transformer风速预测模型-CSDN博客

多特征变量序列预测(七) CEEMDAN+Transformer-BiLSTM预测模型-CSDN博客

基于麻雀优化算法SSA的CEEMDAN-BiLSTM-Attention的预测模型-CSDN博客

基于麻雀优化算法SSA的CEEMDAN-Transformer-BiGRU预测模型-CSDN博客

多特征变量序列预测(八)基于麻雀优化算法的CEEMDAN-SSA-BiLSTM预测模型-CSDN博客

多特征变量序列预测(九)基于麻雀优化算法的CEEMDAN-SSA-BiGRU-Attention预测模型-CSDN博客

多特征变量序列预测(10)基于麻雀优化算法的CEEMDAN-SSA-Transformer-BiLSTM预测模型-CSDN博客

风速预测(七)VMD-CNN-BiLSTM预测模型-CSDN博客 

多变量特征序列、单序列数据预测实战

前言

XGBoost是一种强大的机器学习算法,适用于预测任务。它通过梯度提升树的方式有效地处理复杂数据,并在许多领域中取得了令人瞩目的成果。本文基于前期介绍的风速数据(文末附数据集),利用XGBoost模型分别对多变量序列、单序列的数据进行建模,来实现精准预测。

风速数据集的详细介绍可以参考下文:

风速预测(一)数据集介绍和预处理_风速预测时序数据-CSDN博客

数据集一共有天气、温度、湿度、气压、风速等九个变量

我们通过对比实验来探索,在此数据集上多变量预测和单序列预测的效果

1 风速数据预处理与数据集制作

1.1 导入数据

1.2 多变量数据预处理与数据集制作

多变量数据预测 采用7个特征变量来预测风速数据

1.3 单序列数据预处理与数据集制作

仅使用风速一个变量来构建数据集和预测模型

通过滑动窗口来制作数据集

2超强模型XGBoost——原理介绍

论文链接:

XGBoost | Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

GBoost模型(eXtreme Gradient Boosting)是一种梯度提升框架,由Tianqi Chen在2014年开发,并在机器学习领域广泛应用。XGBoost的核心思想是通过迭代地训练多个弱学习器,并将它们组合起来,实现强大的预测能力。它在梯度提升算法的基础上进行了改进和优化,具有高效、灵活和可扩展的特点。

下面是XGBoost的一些关键特性和原理:

1. 梯度提升:XGBoost使用了梯度提升算法,也称为增强学习(Boosting)算法。它通过迭代地训练多个弱学习器,并通过梯度下降的方式来优化模型的预测能力。每个弱学习器都是在前一个弱学习器的残差上进行训练,从而逐步减小预测误差。

2. 基于树的模型:XGBoost采用了基于树的模型,即决策树。决策树是一种非常灵活和可解释的模型,能够学习到复杂的非线性关系。XGBoost使用了CART(Classification and Regression Trees)作为默认的基学习器,每个决策树都是通过不断划分特征空间来实现分类或回归任务。

3. 正则化策略:为了防止过拟合,XGBoost引入了正则化策略。它通过控制决策树的复杂度来限制模型的学习能力。常用的正则化策略包括限制决策树的最大深度、叶子节点的最小样本数和叶子节点的权重衰减等。

4. 特征选择和分裂:XGBoost在构建决策树时,通过特征选择和分裂来最大化模型的增益。特征选择基于某种评估准则(如信息增益或基尼系数),选择对当前节点的划分最有利的特征。特征分裂则是确定特征划分点的过程,使得划分后的子节点能够最大程度地减小预测误差。

5. 并行计算:为了提高模型的训练速度,XGBoost使用了并行计算的策略。它通过多线程和分布式计算等技术,将训练任务分解为多个子任务,并在不同的处理器上同时进行计算。这样可以加快模型的训练速度,特别是在处理大规模数据集时表现优异。

6. 自定义损失函数:XGBoost允许用户自定义损失函数,以适应不同的任务和需求。用户可以根据具体问题的特点,定义适合的损失函数,并在模型训练过程中使用它。

XGBoost模型通过梯度提升算法和基于树的模型,在许多机器学习任务中都取得了很好的效果,包括分类、回归、排序和推荐等。我们利用其高效、灵活和可扩展的特性,使用XGBoost来构建一个梯度提升模型,通过迭代地训练多个决策树来实现风速数据的精准预测。

3 模型评估和对比

3.1 随机森林预测模型

多特征变量预测

单序列预测

3.2 支持向量机SVM预测模型

多特征变量预测

单序列预测

3.3 XGBoost分类模型

多特征变量预测

单序列预测

模型评估

对比随机森林、SVM模型可以看出来, XGBoost预测模型性能最好,在训练集、测试集上的表现最优,模型分数也是最高,在此数据集上,单序列预测取得了良好的效果。XGBoost预测模型速度快,性能好,适当调整模型参数,还可以进一步提高模型预测表现。

代码、数据如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/505156.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

蓝桥杯Java B组历年真题(2013年-2021年)

一、2013年真题 1、世纪末的星期 使用日期类判断就行,这里使用LocalDate,也可以使用Calendar类 答案 2099 使用LocalDate import java.time.LocalDate; import java.time.format.DateTimeFormatter; // 1:无需package // 2: 类名必须Main, 不可修改p…

重生奇迹mu魔法师用什么技能刷怪

1、在重生奇迹mu中,魔法师刷怪可采用多种技能。其中,火球术、冰箭术、雷电术、火墙术、冰咆哮术等单体伤害技能较为常用,可以快速消灭单个怪物。 2、同时,群体伤害技能如流星雨、冰风暴、雷霆一击等也可在多个怪物间快速切换&…

MVCC及其原理

1. MVCC概述及其原理 多版本并发控制(MVCC,Multi-Version Concurrency Control)是一种数据库管理技术,用于提高数据库系统在多用户环境中的并发性能,同时保证事务的隔离性,避免了不必要的锁定。MVCC允许在…

详解JavaScript的函数

详解 JavaScript 的函数 函数的语法格式 创建函数/函数声明/函数定义 function 函数名(形参列表) { 函数体 return 返回值; // return 语句可省略 } 函数调用 函数名(实参列表) // 不考虑返回值 返回值 函数名(实参列表) // 考虑返回值 示例代码 //定义的没有参数列表&am…

鸿蒙Harmony应用开发—ArkTS声明式开发(触摸事件)

当手指在组件上按下、滑动、抬起时触发。 说明: 从API Version 7开始支持。后续版本如有新增内容,则采用上角标单独标记该内容的起始版本。 onTouch onTouch(event: (event: TouchEvent) > void) 手指触摸动作触发该回调。 卡片能力: 从…

备战蓝桥杯Day22 - 计数排序

计数排序问题描述 对列表进行排序,已知列表中的数范围都在0-100之间。设计时间复杂度为O(n)的算法。 比如列表中有一串数字,2 5 3 1 6 3 2 1 ,需要将他们按照从小到大的次序排列,得到1 1 2 2 3 3 5 6 的结果。那么此时计数排序是…

2000-2021年300+地级市进出口总额数据

2000-2021年300地级市进出口总额数据 1、时间:2000-2021年 2、指标:进出口总额 3、单位:万美元 4、来源:城市年鉴、各省年鉴、城市公报、2021年为城市统计年鉴中进口额出口额加总之后换算成万美元,已尽最大可能进行…

机器学习:集成学习(Python)

一、Adaboost算法 1.1 Adaboost分类算法 adaboost_discrete_c.py import numpy as np import copy from ch4.decision_tree_C import DecisionTreeClassifierclass AdaBoostClassifier:"""adaboost分类算法:既可以做二分类、也可以做多分类&#…

编译链接实战(25)ThreadSanitizer检测线程安全

ThreadSanitizer(又称为TSan)是一个用于C/C的数据竞争检测器。在并发系统中,数据竞争是最常见且最难调试的错误类型之一。当两个线程并发访问同一个变量,并且至少有一个访问是写操作时,就会发生数据竞争。C11标准正式将…

javaweb请求与响应

前言 前面介绍了对应的服务器端的相关代码。这里开始学习服务器端与客户端的数据请求与响应 这里的仅仅是一个简单的调用,并没有经过servelert接口来进行调用,同前面的一样,我们介绍对应的本地服务器进行的部署项目。 代码 //属于简单的不…

【硬件相关】RDMA网络类别及基础介绍

文章目录 一、前言1、RDMA网络协议2、TCP/IP网络协议 二、RDMA类别1、IB2、RoCE3、iWARP 三、RDMA对比1、优缺点说明a、性能b、扩展性c、维护难度 2、总结说明 一、前言 roce-vs-infiniband-vs-tcp-ip RoCE、IB和TCP等网络的基本知识及差异对比 分布式存储常见网络协议有TCP/IP…

CSS 【详解】响应式布局(含 rem 详解)

响应式布局: 同一页面在不同的屏幕上有不同的布局,即一套代码自适应不同的屏幕。 为什么 rem 能用于实现响应式布局? px 绝对长度单位,不同客户端表现都相同,不具有响应式em 相对长度单位,相对于父元素的 f…