【深度优先搜索】【树】【C++算法】2003. 每棵子树内缺失的最小基因值

作者推荐

动态规划的时间复杂度优化

本文涉及知识点

深度优先搜索

LeetCode2003. 每棵子树内缺失的最小基因值

有一棵根节点为 0 的 家族树 ,总共包含 n 个节点,节点编号为 0 到 n - 1 。给你一个下标从 0 开始的整数数组 parents ,其中 parents[i] 是节点 i 的父节点。由于节点 0 是 根 ,所以 parents[0] == -1 。
总共有 105 个基因值,每个基因值都用 闭区间 [1, 105] 中的一个整数表示。给你一个下标从 0 开始的整数数组 nums ,其中 nums[i] 是节点 i 的基因值,且基因值 互不相同 。
请你返回一个数组 ans ,长度为 n ,其中 ans[i] 是以节点 i 为根的子树内 缺失 的 最小 基因值。
节点 x 为根的 子树 包含节点 x 和它所有的 后代 节点。
示例 1:
在这里插入图片描述

输入:parents = [-1,0,0,2], nums = [1,2,3,4]
输出:[5,1,1,1]
解释:每个子树答案计算结果如下:

  • 0:子树包含节点 [0,1,2,3] ,基因值分别为 [1,2,3,4] 。5 是缺失的最小基因值。
  • 1:子树只包含节点 1 ,基因值为 2 。1 是缺失的最小基因值。
  • 2:子树包含节点 [2,3] ,基因值分别为 [3,4] 。1 是缺失的最小基因值。
  • 3:子树只包含节点 3 ,基因值为 4 。1是缺失的最小基因值。
    示例 2:
    在这里插入图片描述

输入:parents = [-1,0,1,0,3,3], nums = [5,4,6,2,1,3]
输出:[7,1,1,4,2,1]
解释:每个子树答案计算结果如下:

  • 0:子树内包含节点 [0,1,2,3,4,5] ,基因值分别为 [5,4,6,2,1,3] 。7 是缺失的最小基因值。
  • 1:子树内包含节点 [1,2] ,基因值分别为 [4,6] 。 1 是缺失的最小基因值。
  • 2:子树内只包含节点 2 ,基因值为 6 。1 是缺失的最小基因值。
  • 3:子树内包含节点 [3,4,5] ,基因值分别为 [2,1,3] 。4 是缺失的最小基因值。
  • 4:子树内只包含节点 4 ,基因值为 1 。2 是缺失的最小基因值。
  • 5:子树内只包含节点 5 ,基因值为 3 。1 是缺失的最小基因值。
    示例 3:

输入:parents = [-1,2,3,0,2,4,1], nums = [2,3,4,5,6,7,8]
输出:[1,1,1,1,1,1,1]
解释:所有子树都缺失基因值 1 。

提示:
n == parents.length == nums.length
2 <= n <= 105
对于 i != 0 ,满足 0 <= parents[i] <= n - 1
parents[0] == -1
parents 表示一棵合法的树。
1 <= nums[i] <= 105
nums[i] 互不相同。

深度优先搜索

除了基因1的节点及它的祖先,其它节点都缺少1。
DFS(cur)结束时,处理了且只处理了它哥哥及自己的后代,如果我们将基因1及其祖先调整成长子。可以将空间复杂从O(nlogn)降低到O(n)。
注意:如果不优化,空间复杂度是O(nn),就是直接为每个节点分配空间,复制所有的后代。极端情况下,独子树的空间复杂度是O(nn)。直接用子树的空间,独子树空间复杂度O(n);非独子树O(nlong)。

超时代码

class CParentToNeiBo
{
public:CParentToNeiBo(const vector<int>& parents){m_vNeiBo.resize(parents.size());for (int i = 0; i < parents.size(); i++){if (-1 == parents[i]){m_root = i;}else{m_vNeiBo[parents[i]].emplace_back(i);}}}vector<vector<int>> m_vNeiBo;int m_root=-1;
};class Solution {
public:vector<int> smallestMissingValueSubtree(vector<int>& parents, vector<int>& nums) {CParentToNeiBo neiBo(parents);m_nums = nums;m_vIs1.resize(nums.size());m_ans.assign(nums.size(),1);m_vHas.resize(100'000+10);DFS1(neiBo.m_root, neiBo.m_vNeiBo);for (auto& v : neiBo.m_vNeiBo){for (int j = 1; j < v.size(); j++){if (m_vIs1[v[j]]){std::swap(v[0], v[j]);}}}DFS2(neiBo.m_root, neiBo.m_vNeiBo);return m_ans;}void DFS2(int cur, vector<vector<int>>& neiBo){		for (const auto& next : neiBo[cur]){DFS2(next, neiBo);}m_vHas[m_nums[cur]] = true;while (m_vHas[m_iNeed]){m_iNeed++;}if (m_vIs1[cur]){m_ans[cur] = m_iNeed;}}bool DFS1(int cur, vector<vector<int>>& neiBo){bool b = (1 == m_nums[cur]);		for (const auto& next : neiBo[cur]){b |= DFS1(next, neiBo);}return m_vIs1[cur]=b;}vector<int> m_nums,m_ans;vector<bool> m_vIs1;int m_iNeed = 1;vector<bool> m_vHas;
};

1及其祖先不用DFS

class CParentToNeiBo
{
public:CParentToNeiBo(const vector<int>& parents){m_vNeiBo.resize(parents.size());for (int i = 0; i < parents.size(); i++){if (-1 == parents[i]){m_root = i;}else{m_vNeiBo[parents[i]].emplace_back(i);}}}vector<vector<int>> m_vNeiBo;int m_root=-1;
};class Solution {
public:vector<int> smallestMissingValueSubtree(vector<int>& parents, vector<int>& nums) {CParentToNeiBo neiBo(parents);m_nums = nums;m_vIs1.resize(nums.size());m_ans.assign(nums.size(),1);m_vHas.resize(100'000+10);int i1 = std::find(nums.begin(), nums.end(), 1)- nums.begin();while ((-1 != i1) && (nums.size() != i1)){m_vIs1[i1] = true;i1 = parents[i1];}for (auto& v : neiBo.m_vNeiBo){for (int j = 1; j < v.size(); j++){if (m_vIs1[v[j]]){std::swap(v[0], v[j]);}}}DFS2(neiBo.m_root, neiBo.m_vNeiBo);return m_ans;}void DFS2(int cur, vector<vector<int>>& neiBo){		for (const auto& next : neiBo[cur]){DFS2(next, neiBo);}m_vHas[m_nums[cur]] = true;		if (m_vIs1[cur]){while (m_vHas[m_iNeed]){m_iNeed++;}m_ans[cur] = m_iNeed;}}vector<int> m_nums,m_ans;vector<bool> m_vIs1;int m_iNeed = 1;vector<bool> m_vHas;
};

测试用例


template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{vector<int> parents,  nums;{Solution sln;parents = { -1, 0, 0, 2 }, nums = { 1, 2, 3, 4 };auto res = sln.smallestMissingValueSubtree(parents, nums);Assert({ 5,1,1,1 }, res);}{Solution sln;parents = { -1, 0, 1, 0, 3, 3 }, nums = { 5, 4, 6, 2, 1, 3 };auto res = sln.smallestMissingValueSubtree(parents, nums);Assert({ 7,1,1,4,2,1 }, res);}{Solution sln;parents = { -1, 2, 3, 0, 2, 4, 1 }, nums = { 2, 3, 4, 5, 6, 7, 8 };auto res = sln.smallestMissingValueSubtree(parents, nums);Assert({ 1,1,1,1,1,1,1 }, res);}
}

2023年2月版(当时能过)

class Solution {
public:
vector smallestMissingValueSubtree(const vector& parents, const vector& nums) {
m_c = nums.size();
m_vDirect.resize(m_c);
for (int i = 1; i < parents.size(); i++)
{
m_vDirect[parents[i]].push_back(i);
}
m_vVisiteValue.resize(m_c + 1);
m_vRet.assign(m_c, 1);
for (int i = 0; i < nums.size(); i++)
{
if (1 == nums[i])
{
DFS(i, -1,parents, nums);
break;
}
}
return m_vRet;
}
void DFS(int iCur, int iFromChild,const vector& parents, const vector& nums)
{
if (-1 == iCur)
{
return;
}
DFSForValue(iCur, iFromChild, nums);
int iMiss = (-1 == iFromChild) ? 1 : m_vRet[iFromChild];
while ((iMiss < m_vVisiteValue.size()) && (m_vVisiteValue[iMiss]))
{
iMiss++;
}
m_vRet[iCur] = iMiss;
DFS(parents[iCur], iCur, parents, nums);
}
void DFSForValue(int iCur, int iFromChild, const vector& nums)
{
m_vVisiteValue[nums[iCur]] = true;
for (auto& next : m_vDirect[iCur])
{
if (next == iFromChild)
{
continue;
}
DFSForValue(next, iFromChild, nums);
}
}
int m_c;
vector<vector> m_vDirect;
vector m_vRet;
vector m_vVisiteValue;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/505998.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

批次大小对ES写入性能影响初探

问题背景 ES使用bulk写入时每批次的大小对性能有什么影响&#xff1f;设置每批次多大为好&#xff1f; 一般来说&#xff0c;在Elasticsearch中&#xff0c;使用bulk API进行批量写入时&#xff0c;每批次的大小对性能有着显著的影响。具体来说&#xff0c;当批量请求的大小增…

langchain学习笔记(九)

RunnableBranch: Dynamically route logic based on input | &#x1f99c;️&#x1f517; Langchain 基于输入的动态路由逻辑&#xff0c;通过上一步的输出选择下一步操作&#xff0c;允许创建非确定性链。路由保证路由间的结构和连贯。 有以下两种方法执行路由 1、通过Ru…

基于tomcat的JavaWeb实现

Tomcat服务器 免费&#xff0c;性能一般的服务器 安装配置 基于Java&#xff0c;故需要配置环境变量&#xff0c;新加系统路径JAVA_HOME&#xff0c;路径为jdk的主目录。 而后打开bin目录下的startup.bat文件出现如下窗口说明配置成功 idea继承tomcat服务器 使用java开发…

在 Ubuntu 终端输出不同颜色、粗体、下划线或其他样式的字体

嗯。调试时总发现自己打印的调试信息太过普通、单调&#xff0c;于是乎…… Notice 要在终端实现字体的特殊样式&#xff0c;通常通过使用特殊的控制字符来实现&#xff0c;而不是通过某语言本身的功能来实现。 在大多数终端中&#xff0c;可以使用 ANSI 转义序列来设置字体的…

Bulingbuling - 《历史的教训》 [ The Lessons of History ]

《历史的教训》 两位当代最伟大思想家的著名论文集&#xff0c;汇集了 5000 多年的历史 作者&#xff1a;威尔-杜兰特和阿里尔-杜兰特 The Lessons of History The celebrated collection of essays compiling over 5,000 years of history by two of the greatest thinkers …

一次电脑感染Synaptics Pointing Device Driver病毒的经历,分享下经验

没想到作为使用电脑多年的老司机也会电脑中病毒&#xff0c;周末玩电脑的时候突然电脑很卡&#xff0c;然后自动重启&#xff0c;奇怪&#xff0c;之前没出现这个情况。 重启后电脑开机等了几十秒&#xff0c;打开任务管理器查看开机进程&#xff0c;果然发现有个Synaptics Po…

《梦幻西游》本人收集的34个单机版游戏,有详细的视频架设教程,值得收藏

梦幻西游这款游戏&#xff0c;很多人玩&#xff0c;喜欢研究的赶快下载吧。精心收集的34个版本。不容易啊。里面有详细的视频架设教程&#xff0c;可以外网呢。 《梦幻西游》本人收集的34个单机版游戏&#xff0c;有详细的视频架设教程&#xff0c;值得收藏 下载地址&#xff1…

制作镜像与配置推送阿里云仓库

一、制作jdk镜像 1.1、Alpine linux简介 Alpine Linux是一个轻量级的Linux发行版&#xff0c;专注于安全、简洁和高效。它采用了musl libc和BusyBox&#xff0c;使得系统资源占用较少&#xff0c;启动速度较快。 Alpine Linux也提供了一个简单的包管理工具APK&#xff0c;(注…

电子电气架构——AUTOSAR架构下EcuM唤醒源事件详解

电子电气架构——AUTOSAR架构下EcuM唤醒源事件详解 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 没有人关注你。也无需有人关注你。你必须承认自己的价值,你不能站在他人的角度来反对自己。人…

蓝桥杯倒计时 43天 - 前缀和

思路&#xff1a;如果用n^2复杂度暴力会超时。nlogn 可以&#xff0c;利用前缀和化简&#xff0c;提前存储某个位置前的每个石头搬运到该位置和每个石头后搬运到该位置的前缀和On最后直接输出 On。排序花 nlogn #include<bits/stdc.h> using namespace std; typedef pai…

使用C语言 打印出所有的水仙花数

水仙花数 一.什么是水仙花数二.如何获取一个数的每一位数三.如何计算一个数有几位数四.计算出所有的水仙花数 一.什么是水仙花数 水仙花数的定义&#xff1a;“水仙花数”是指一个n位数&#xff0c;其各位数字的n次方之和确好等于该数本身&#xff0c;如:153&#xff1d;1^ 3&a…

(C语言)回调函数

回调函数是什么&#xff1f; 回调函数就是⼀个通过函数指针调⽤的函数。 如果你把函数的指针&#xff08;地址&#xff09;作为参数传递给另⼀个函数&#xff0c;当这个指针被⽤来调⽤其所指向的函数 时&#xff0c;被调⽤的函数就是回调函数。回调函数不是由该函数的实现⽅…