美团分布式 ID 框架 Leaf 介绍和使用

一、Leaf

在当今日益数字化的世界里,软件系统的开发已经成为了几乎所有行业的核心。然而,随着应用程序的规模不断扩大,以及对性能和可扩展性的需求不断增加,传统的软件架构和设计模式也在不断地面临挑战。其中一个主要挑战就是如何有效地处理分布式环境中的唯一标识问题。这正是分布式ID 的重要性所在。

分布式ID的实现方式有多种多样,常见的包括 UUIDSnowflake 算法、TwitterSnowflake 算法、基于数据库的自增长ID 等。每种方式都有其适用的场景和优缺点。

比如常见的 UUID , 标准型式包含3216进制数字,以连字号分为五段,形式为8-4-4-4-1236个字符,优点是性能非常高,本地生成,没有网络消耗,但缺点也显而易见,首先不易于存储,UUID太长,16字节128位,通常以36长度的字符串表示,很多场景不适用。其次信息不安全,基于MAC地址生成UUID的算法可能会造成MAC地址泄露,这个漏洞曾被用于寻找梅丽莎病毒的制作者位置。也不适合作为DB的主键。MySQL官方有明确的建议主键要尽量越短越好。

基于数据库的自增长ID 的方式,实现起来非常简单,并且ID是单向自增顺序的,但缺点也很明显,过度依赖于 DB 数据库,在并发量高的情况下数据库成为了性能瓶颈。

基于Snowflake 算法的方式,可以解决上述提到的问题,并且稳定性和灵活性都非常高,但强依赖于机器时钟,如果机器上时钟回拨,会导致发号重复或者服务会处于不可用状态。

既然如此,那下面我们来认识更强大的分布式ID生成器 Leaf ,它是美团开源的分布式 ID 生成器,旨在解决分布式系统中的唯一标识生成问题,确保在分布式环境下生成的 ID 具有全局唯一性、顺序性和高性能。

Leaf 实现了Leaf-segmentLeaf-snowflake两种方案。

Leaf-segment是一种基于数据库的分布式 ID 生成方案,原始基于数据库的自增长ID 方案,每次获取ID都得读写一次数据库,造成数据库压力大,该方案利用proxy server批量获取,每次获取一个segment(step决定大小)号段的值。用完之后再去数据库获取新的号段,可以大大的减轻数据库的压力。各个业务不同的发号需求用biz_tag字段来区分,每个biz-tagID获取相互隔离,互不影响。如果以后有性能需求需要对数据库扩容,不需要上述描述的复杂的扩容操作,只需要对biz_tag分库分表就行。

Leaf-snowflake方案完全沿用snowflake方案的bit位设计,对于workerID的分配,使用Zookeeper持久顺序节点的特性自动对snowflake节点配置wokerID,对于时钟回拨问题,解决方案如下:

在这里插入图片描述

更多介绍可以参考官方信息:

官方介绍地址:https://tech.meituan.com/2017/04/21/mt-leaf.html

github:https://github.com/Meituan-Dianping/Leaf.git

下面一起来实践下Leaf的使用。

首先拉取 Leaf SpringBoot 封装依赖源码:

git clone -b feature/spring-boot-starter https://github.com/Meituan-Dianping/Leaf.git
cd leaf

使用 MavenLeaf 打到本地仓库中

mvn clean install -Dmaven.test.skip=true 

在这里插入图片描述

打包成功后,可以创建一个 SpringBoot 项目,在 pom 中加入下面依赖:

<dependency><artifactId>leaf-boot-starter</artifactId><groupId>com.sankuai.inf.leaf</groupId><version>1.0.1-RELEASE</version><exclusions><exclusion><groupId>com.alibaba</groupId><artifactId>druid</artifactId></exclusion><exclusion><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId></exclusion></exclusions></dependency><dependency><groupId>com.alibaba</groupId><artifactId>druid</artifactId><version>1.1.6</version></dependency><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId></dependency>

二、Leaf-segment 方式使用

首先创建leaf使用的数据库:

CREATE DATABASE leaf

创建ID规则表:

CREATE TABLE `leaf_alloc` (`biz_tag` varchar(128)  NOT NULL DEFAULT '',`max_id` bigint(20) NOT NULL DEFAULT '1',`step` int(11) NOT NULL,`description` varchar(256)  DEFAULT NULL,`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,PRIMARY KEY (`biz_tag`)
) ENGINE=InnoDB;

写入两个 biz_tag

insert into leaf_alloc(biz_tag, max_id, step, description) values('test1', 1, 2000, '测试1');
insert into leaf_alloc(biz_tag, max_id, step, description) values('test2', 1, 2000, '测试2');

项目中加入leaf 和数据库配置:

leaf:name: test1segment:enable: trueurl: jdbc:mysql://localhost:3306/leaf?useUnicode=true&characterEncoding=utf8&serverTimezone=GMTusername: rootpassword: root

生成ID测试:

@Slf4j
@SpringBootTest
class LeafIdApplicationTests {@Resourceprivate SegmentService segmentService;@Testvoid contextLoads() {// 生成 1000 个IDStopWatch sw = new StopWatch();sw.start();for (int i = 0; i < 1000; i++) {long id1 = segmentService.getId("test1").getId();long id2 = segmentService.getId("test2").getId();log.info("id1: {}, id2: {}", id1, id2);}sw.stop();log.info(sw.prettyPrint());}}

在这里插入图片描述
可以看到在约 0.178 秒的时间,为两个业务场景生成了 1000ID

三、Leaf-snowflake 方式使用

这种模式依赖于 Zookeeper ,所以在实验前你需要有一个运行中的 Zookeeper 服务。

这种模式操作ZK使用 curator,因此需要引入 curator 的依赖:

<dependency><groupId>org.apache.curator</groupId><artifactId>curator-recipes</artifactId><version>2.12.0</version>
</dependency>

在配置文件中开启Leaf-snowflake 模式:

leaf:name: test1segment:enable: trueurl: jdbc:mysql://localhost:3306/leaf?useUnicode=true&characterEncoding=utf8&serverTimezone=GMTusername: rootpassword: rootsnowflake:enable: trueaddress: 127.0.0.1port: 2181

生成ID测试:

@Slf4j
@SpringBootTest
class LeafIdApplicationTests {@Resourceprivate SegmentService segmentService;@Resourceprivate SnowflakeService snowflakeService;@Testvoid contextLoads() {// 生成 1000 个IDStopWatch sw = new StopWatch();sw.start();for (int i = 0; i < 1000; i++) {long id1 = snowflakeService.getId("test1").getId();long id2 = snowflakeService.getId("test2").getId();log.info("id1: {}, id2: {}", id1, id2);}sw.stop();log.info(sw.prettyPrint());}}

在这里插入图片描述

可以看到相比于上面数据库模式,仅需要约 0.0234105 秒,性能更高,而且做到ID不是顺序+1式增长。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/506128.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode---386周赛

题目列表 3046. 分割数组 3047. 求交集区域内的最大正方形面积 3048. 标记所有下标的最早秒数 I 3049. 标记所有下标的最早秒数 II 一、分割数组 这题简单的思维题&#xff0c;要想将数组分为两个数组&#xff0c;且分出的两个数组中数字不会重复&#xff0c;很显然一个数…

2024第二次培训:win11系统下使用nginx、JDK、mysql搭建基于vue2、java前后端分离的web应用运行环境

一.背景 公司安排了带徒弟的任务&#xff0c;给培训写点材料。前面分开介绍了mysql、jdk、nginx的安装&#xff0c;都只是零星的介绍&#xff0c;只能算零散的学习。学习了有什么用呢&#xff1f;能解决什么问题&#xff1f;能完成什么工作&#xff1f; 今天我们要用之前的几篇…

高中数学:分式函数值域的求法

一、求值域的两种基本思路 1、根据函数图像和定义域求出值域。 难点&#xff1a;画出函数图像 2、研究函数单调性和定义域求出值域。 本篇主要讲一下&#xff0c;画图法求值域 二、函数图像画法 高中所学的分式函数&#xff0c;基本由反比例函数平移得到。 复杂分式函数图…

web漏洞与规避

文章目录 一、XSS 跨站脚本攻击1.1 XSS攻击的主要类型反射型XSS存储型XSSDOM型XSS 1.2 前端开发如何应对XSS 二、CSRF 跨站请求伪造2.1 CSRF例子2.2 前端开发如何应对CSRF 三、SQL 注入3.1 前端如何防御SQL注入 四、前端如何使用CSP 一、XSS 跨站脚本攻击 攻击者通过在受害者的…

Day12:信息打点-Web应用源码泄漏开源闭源指纹识别GITSVNDS备份

目录 开源-CMS指纹识别源码获取方式 闭源-习惯&配置&特性等获取方式 闭源-托管资产平台资源搜索监控 思维导图 章节点 Web&#xff1a;语言/CMS/中间件/数据库/系统/WAF等 系统&#xff1a;操作系统/端口服务/网络环境/防火墙等 应用&#xff1a;APP对象/API接口/微…

【Python】进阶学习:pandas--如何根据指定条件筛选数据

【Python】进阶学习&#xff1a;pandas–如何根据指定条件筛选数据 &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&#x1f448; 希望…

synchrosized 的可重入特性、死锁、哲学家就餐问题以及解决死锁的方法等干货

文章目录 &#x1f490;synchrosized的可重入特性关于死锁&#xff1a;哲学家就餐问题&#x1f4a1;如何避免/解决死锁 &#x1f490;synchrosized的可重入特性 可重入特性&#xff1a;当一个线程针对一个对象同时加锁多次&#xff0c;不会构成死锁&#xff0c;这样的特性称为…

NoSQL--虚拟机网络配置

目录 1.初识NoSQL 1.1 NoSQL之虚拟机网络配置 1.1.1 首先&#xff0c;导入预先配置好的NoSQL版本到VMware Workstation中 1.1.2 开启虚拟机操作&#xff1a; 1.1.2.1 点击开启虚拟机&#xff1a; 1.1.2.2 默认选择回车CentOS Linux&#xff08;3.10.0-1127.e17.x86_64) 7 …

今日Arxiv最热NLP大模型论文:Llama-2上下文扩大48倍的方法来了,港大发布,无需训练

引言&#xff1a;大语言模型的长上下文理解能力 在当今的人工智能领域&#xff0c;大语言模型&#xff08;Large Language Models&#xff0c;简称LLMs&#xff09;的长上下文理解能力成为了一个重要的研究方向。这种能力对于模型来说至关重要&#xff0c;因为它使得LLMs能够有…

精品SSM的教学管理系统课程作业成绩

《[含文档PPT源码等]精品基于SSM的教学管理系统[包运行成功]》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程、包运行成功&#xff01; 软件开发环境及开发工具&#xff1a; Java——涉及技术&#xff1a; 前端使用技术&#xff1a;HTML5,CSS3、Jav…

<网络安全>《63 微课堂<第3课 旁路部署和串行部署是什么?>》

1、串联和并联概念 串联和并联是物理学上的概念。 串联电路把元件逐个顺次连接起来组成的电路。如图&#xff0c;特点是&#xff1a;流过一个元件的电流同时也流过另一个。 并联电路把元件并列地连接起来组成的电路&#xff0c;如图&#xff0c;特点是&#xff1a;干路的电流…

Ps:快照

“历史记录” History面板可分为快照区和历史记录状态区两个部分。 Photoshop 的快照 snapshot功能允许用户保存当前工作状态的完整副本&#xff0c;这包括图像的所有图层&#xff08;包括图层可见性&#xff09;、图层样式、选区以及颜色模式、位深度等其他属性。 通过创建当前…